Rapidly Pulsed Reductants for Diesel NOx Reduction With Lean NOx Traps: Comparison of Alkanes and Alkenes as the Reducing Agent

Author(s):  
Amin Reihani ◽  
Brent Patterson ◽  
John Hoard ◽  
Galen B. Fisher ◽  
Joseph R. Theis ◽  
...  

Lean NOx Traps (LNTs) are often used to reduce NOx on smaller diesel passenger cars where urea-based Selective Catalytic Reduction (SCR) systems may be difficult to package. However, the performance of LNTs at temperatures above 400°C needs to be improved. The use of Rapidly Pulsed Reductants (RPR) is a process in which hydrocarbons are injected in rapid pulses ahead of the LNT in order to improve its performance at higher temperatures and space velocities. This approach was developed by Toyota and was originally called Di-Air (Diesel NOx aftertreatment by Adsorbed Intermediate Reductants) [1]. There is a vast parameter space that needs to be explored in order to maximize the NOx conversion at high temperatures and flow rates while minimizing the fuel penalty associated with the hydrocarbon injections. Four parameters were identified as important for RPR operation: (1) the flow field and reductant mixing uniformity; (2) the pulsing parameters including the pulse frequency, duty cycle, and rich magnitude; (3) the reductant type; and (4) the catalyst composition, including the type and loading of precious metal, the type and loading of NOx storage material, and the amount of oxygen storage capacity (OSC). In this study, RPR performance was assessed between 150°C and 650°C with several reductants including dodecane, propane, ethylene, propylene, H2, and CO. A novel injection and mixer system was designed that allowed for the investigation of previously unexplored areas of high frequency injections up to f = 100Hz. Under RPR conditions, H2, CO, dodecane, and C2H4 provided approximately 80% NOx conversion at 500°C, but at 600°C the conversions were significantly lower, ranging from 40 to 55%. The NOx conversion with C3H8 was low across the entire temperature range, with a maximum conversion of 25% near 300°C and essentially no conversion at 600°C. In contrast, C3H6 provided greater than 90% NOx conversion over a broad range of temperature between 280°C and 630°C. Among the hydrocarbons, this suggested that the high temperature NOx conversion with RPR improves as the reactivity of the hydrocarbon increases.

Author(s):  
Amin Reihani ◽  
Brent Patterson ◽  
John Hoard ◽  
Galen B. Fisher ◽  
Joseph R. Theis ◽  
...  

Lean NOx traps (LNTs) are often used to reduce NOx on smaller diesel passenger cars where urea-based selective catalytic reduction (SCR) systems may be difficult to package. However, the performance of LNTs at temperatures above 400 °C needs to be improved. Rapidly pulsed reductants (RPR) is a process in which hydrocarbons are injected in rapid pulses ahead of the LNT in order to improve its performance at higher temperatures and space velocities. This approach was developed by Toyota and was originally called Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) (Bisaiji et al., 2011, “Development of Di-Air—A New Diesel deNOx System by Adsorbed Intermediate Reductants,” SAE Int. J. Fuels Lubr., 5(1), pp. 380–388). Four important parameters were identified to maximize NOx conversion while minimizing fuel penalty associated with hydrocarbon injections in RPR operation: (1) flow field and reductant mixing uniformity, (2) pulsing parameters including the pulse frequency, duty cycle, and magnitude, (3) reductant type, and (4) catalyst composition, including the type and loading of precious metal and NOx storage material, and the amount of oxygen storage capacity (OSC). In this study, RPR performance was assessed between 150 °C and 650 °C with several reductants including dodecane, propane, ethylene, propylene, H2, and CO. Under RPR conditions, H2, CO, C12H26, and C2H4 provided approximately 80% NOx conversion at 500 °C; however, at 600 °C the conversions were significantly lower. The NOx conversion with C3H8 was low across the entire temperature range. In contrast, C3H6 provided greater than 90% NOx conversion over a broad range of 280–630 °C. This suggested that the high-temperature NOx conversion with RPR improves as the reactivity of the hydrocarbon increases.


Author(s):  
Michael A. Smith ◽  
Christopher D. Depcik ◽  
Stefan Klinkert ◽  
John W. Hoard ◽  
Stanislav V. Bohac ◽  
...  

One approach for nitrogen oxides (NOx) emission control of medium duty diesel engines is through the use of a combination Lean NOx Trap and Selective Catalytic Reduction (LNT-SCR) catalyst system. In this system, part of the NOx conversion occurs via an NH3 SCR catalyst that is dependent on the NO2 to NOx ratio of the feed gas with NO2 being a more advantageous oxidizer. One benefit of using this system is the conversion of NO to NO2 over the LNT which increases the NO2:NOx ratio of the feed gas to the SCR catalyst. An experimental study has been performed to investigate the NO2-NH3 reaction for an Fe-based zeolite SCR catalyst using a bench top flow reactor. The increase in NO2 concentration at the inlet of the SCR results in the formation of large quantities of N2O from 200°C to 400°C. Further experiments determined that N2O and NH3 react above 350°C. This has led to a hypothesis that one primary SCR reaction (Slow SCR) can be replaced with two reaction steps featuring NH3, NO2, and N2O. As a result, this paper proposes five NOx reduction reactions as part of a global mechanism, which would account for the observed experimental behavior.


2021 ◽  
Author(s):  
Alejandro Calle-Asensio ◽  
Juan José Hernández ◽  
José Rodríguez-Fernández ◽  
Víctor Domínguez-Pérez

Abstract Advanced biofuels and electrofuels, among which are medium-long chain alcohols, have gained importance in the transport sector with the enforcement of the EU Renewable Energy Directive (2018/2001). In parallel, last European emission regulations have become much more restrictive regarding NOx, so vehicle manufacturers have been forced to incorporate lean NOx trap (LNT) and/or selective catalytic reduction (SCR). Thus, the combination of modern DeNOx devices and the upcoming higher contribution of sustainable biofuels is a new challenge. In this work, two Euro 6 diesel vehicles, one equipped with LNT and the other with ammonia-SCR, have been tested following the Worldwide harmonized Light-duty vehicles Test Cycle (WLTC) at warm (24°C) and cold (−7°C) conditions using conventional diesel fuel and a diesel-butanol (90/10% vol.) blend. While the effect of butanol on the LNT efficiency was not significant, its influence on the SCR performance was notable during the low and medium-speed phases of the driving cycle, mainly under warm climatic conditions. Despite of the lower NOx concentration at the catalyst inlet, the worst efficiency of the SCR with butanol could be attributed to hydrocarbons deposition on the catalyst surface, which inhibits the NOx reduction reactions with ammonia. Moreover, the LNT was not sensitive to the ambient temperature while the SCR performance greatly depended on this parameter.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1966
Author(s):  
Shiyong Yu ◽  
Jichao Zhang

A systematic modeling approach was scrutinized to develop a kinetic model and a novel monolith channel geometry was designed for NH3 selective catalytic reduction (NH3-SCR) over Cu-ZSM-5. The redox characteristic of Cu-based catalysts and the variations of NH3, NOx concentration, and NOx conversion along the axis in porous media channels were studied. The relative pressure drop in different channels, the variations of NH3 and NOx conversion efficiency were analyzed. The model mainly considers NH3 adsorption and desorption, NH3 oxidation, NO oxidation, and NOx reduction. The results showed that the model could accurately predict the NH3-SCR reaction. In addition, it was found that the Cu-based zeolite catalyst had poor low-temperature catalytic performance and good high-temperature activity. Moreover, the catalytic reaction of NH3-SCR was mainly concentrated in the upper part of the reactor. In addition, the hexagonal channel could effectively improve the diffusion rate of gas reactants to the catalyst wall, reduce the pressure drop and improve the catalytic conversion efficiencies of NH3 and NOx.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1307 ◽  
Author(s):  
Yaping Zhang ◽  
Xiupeng Yue ◽  
Tianjiao Huang ◽  
Kai Shen ◽  
Bin Lu

TiO2-ZrO2 (Ti-Zr) carrier was prepared by a co-precipitation method and 1 wt. % V2O5 and 0.2 CeO2 (the Mole ratio of Ce to Ti-Zr) was impregnated to obtain the V2O5-CeO2/TiO2-ZrO2 catalyst for the selective catalytic reduction of NOx by NH3. The transient activity tests and the in situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) analyses were employed to explore the NH3-SCR (selective catalytic reduction) mechanism systematically, and by designing various conditions of single or mixing feeding gas and pre-treatment ways, a possible pathway of NOx reduction was proposed. It was found that NH3 exhibited a competitive advantage over NO in its adsorption on the catalyst surface, and could form an active intermediate substance of -NH2. More acid sites and intermediate reaction species (-NH2), at lower temperatures, significantly promoted the SCR activity of the V2O5-0.2CeO2/TiO2-ZrO2 catalyst. The presence of O2 could promote the conversion of NO to NO2, while NO2 was easier to reduce. The co-existence of NH3 and O2 resulted in the NH3 adsorption strength being lower, as compared to tests without O2, since O2 could occupy a part of the active site. Due to CeO2’s excellent oxygen storage-release capacity, NH3 adsorption was weakened, in comparison to the 1 wt. % V2O5-0.2CeO2/TiO2-ZrO2 catalyst. If NOx were to be pre-adsorbed in the catalyst, the formation of nitrate and nitro species would be difficult to desorb, which would greatly hinder the SCR reaction. All the findings concluded that NH3-SCR worked mainly through the Eley-Rideal (E-R) mechanism.


Author(s):  
Devesh Upadhyay ◽  
Michiel Van Nieuwstadt

The leading aftertreatment technologies for NOx removal from the exhaust gas of lean burn engines, Diesels in particular, are urea based Selective Catalytic Reduction (SCR), Lean NOx Traps (LNT) and Active Lean NOx Catalysts (ALNC). It is generally believed that the SCR technique has the potential of providing the best NOx conversion efficiency relative to the other techniques. Nonetheless, it is crucial that the high conversion efficiencies be achieved with a minimum slippage of unreacted ammonia as tail pipe emissions. This necessitates a precise control over the urea injection process. The complex behavior of the catalyst substrate with respect to adsorption and desorption of ammonia in conjunction with a lack of “stored ammonia” sensing capabilities makes the control problem challenging. In this paper we present a model-based control design approach using a lumped parameter model of an SCR system that includes the essential dynamics of the plant. The model includes the adsorption, desorption and surface coverage dynamics, along with the NOx reduction and ammonia oxidation dynamics based on the relevant chemical reaction rates.


2016 ◽  
Vol 9 (3) ◽  
pp. 1630-1641 ◽  
Author(s):  
Amin Reihani ◽  
Benjamin Corson ◽  
John W. Hoard ◽  
Galen B. Fisher ◽  
Evgeny Smirnov ◽  
...  

Author(s):  
Yi Chen ◽  
Vojtěch Šíma ◽  
Weiyang Lin ◽  
Jeff Sterniak ◽  
Stanislav V. Bohac

Multi-mode combustion (MMC) concepts using homogeneous charge compression ignition (HCCI) gasoline combustion at low loads and spark assisted compression ignition (SACI) gasoline combustion at medium loads have the potential for improved fuel efficiency relative to spark ignition (SI) gasoline combustion. Two MMC concepts are compared in this paper with respect to fuel efficiency and tailpipe NOx emissions. The first concept uses stoichiometric HCCI and SACI to allow standard three-way catalyst (TWC) operation. The second concept also uses HCCI and SACI, but cycles between lean and rich combustion and uses a TWC with increased oxygen storage capacity (OSC) for potentially even greater fuel efficiency improvement. This paper performs a preliminary comparison of the two MMC concepts by analyzing two scenarios: 1) cycling between stoichiometric HCCI at 2 bar BMEP (brake mean effective pressure) and stoichiometric SACI at 3 bar BMEP, and 2) cycling between lean HCCI at 2 bar BMEP and rich SACI at 3 bar BMEP. The effects of excess oxygen ratio during HCCI operation and the frequency of oxygen depletion events on TWC performance and fuel efficiency are investigated. Results show that MMC lean/rich cycling can achieve better fuel efficiency than stoichiometric HCCI/SACI cycling. NOx emissions are moderately higher, but may still be low enough to meet current and future emission regulations.


Author(s):  
Vitaly Y. Prikhodko ◽  
Josh A. Pihl ◽  
Samuel A. Lewis ◽  
James E. Parks

Core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench-reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250°C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600°C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.


2018 ◽  
Vol 223 ◽  
pp. 177-191 ◽  
Author(s):  
Amin Reihani ◽  
Galen B. Fisher ◽  
John W. Hoard ◽  
Joseph R. Theis ◽  
James D. Pakko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document