Experimental Study of Flame Stretch Under Engine-Like Conditions

Author(s):  
Behdad Afkhami ◽  
Yanyu Wang ◽  
Scott A. Miers ◽  
Jeffrey D. Naber

Since fossil fuels will remain the main source of energy for power generation and transportation in next decades, their combustion processes remain an important concern for the foreseeable future. For liquid or gaseous fuels, flame velocity that propagates normal to itself and relative to the flow into the unburned mixture is one of the most important quantities to study. In a non-uniform flow, a curved flame front area changes continually which is known as flame stretch. The concept becomes more important when it is realized that the stretch affects the turbulent flame speed. The current research empirically studies flame stretch under engine-like conditions since there has not been enough experimental studies in this area. For this reason, a one-cylinder, direct-injection, spark-ignition, naturally-aspirated optical engine was utilized to image the flame propagation process inside an internal combustion engine cylinder on the tumble plane. The flame front was found by processing high speed images which were taken from the flame inside the cylinder. Flame front propagation analysis showed that after the flame kernel was developed, during flame propagation period, the stretch rate decreased until the flame front touches the piston surface. This trend was common among stoichiometric, lean, and rich mixtures. In addition, the fuel-air mixture with λ = 0.85 showed lower stretch rate compared to stoichiometric or lean mixture with λ = 1.2. However, based on previous studies, further enrichment may result in the flame stretch rate become greater than that of the stretch rates for stoichiometric or lean mixtures. Also, comparing the stretch rate at two different engine speeds revealed that as the speed increased the stretch rate also increased; especially during the early flame development period. Therefore, according to previous studies which discussed flame stretch as a mechanism for flame extinguishment, the probability of the flame extinction is higher when the engine speed is higher.

Author(s):  
Alejandro M. Briones ◽  
Balu Sekar ◽  
Timothy Erdmann

The effect of centrifugal force on flame propagation velocity of stoichiometric propane–, kerosene–, and n-octane–air turbulent premixed flames was numerically examined. The quasi-turbulent numerical model was set in an unsteady two-dimensional (2D) geometry with finite length in the transverse and streamwise directions but with infinite length in the spanwise direction. There was relatively good comparison between literature-reported measurements and predictions of propane–air flame propagation velocity as a function of centrifugal force. It was found that for all mixtures the flame propagation velocity increases with centrifugal force. It reaches a maximum, then falls off rapidly with further increases in centrifugal force. The results of this numerical study suggest that there are no distinct differences among the three mixtures in terms of the trends seen of the effect of centrifugal force on the flame propagation velocity. There are, however, quantitative differences. The numerical model is set in a noninertial, rotating reference frame. This rotation imposes a radially outward (centrifugal) force. The ignited mixture at one end of the tube raises the temperature and its heat release tends to laminarize the flow. The attained density difference combined with the direction of the centrifugal force promotes Rayleigh–Taylor instability. This instability with thermal expansion and turbulent flame speed constitute the flame propagation mechanism towards the other tube end. A wave is also generated from the ignition zone but propagates faster than the flame. During propagation the flame interacts with eddies that wrinkle and/or corrugate the flame. The flame front wrinkles interact with streamtubes that enhance Landau–Darrieus (hydrodynamic) instability, giving rise to a corrugated flame. Under strong stretch conditions the stabilizing equidiffusive-curvature mechanism fails and the flame front breaks up, allowing inflow of unburned mixture into the flame. This phenomenon slows down the flame temporarily and then the flame speeds up faster than before. However, if corrugation is large and the inflow of unburned mixture into the flame is excessive, the latter locally quenches and slows down the flame. This occurs when the centrifugal force is large, tending to blowout the flame. The wave in the tube interacts continuously with the flame through baroclinic torques at the flame front that further enhances the above mentioned flame–eddy interactions. Only at low centrifugal forces, the wave intermingles several times with the flame before the averaged flame propagation velocity is determined. The centrifugal force does not substantially increase the turbulent flame speed as commented by previous experimental investigations. The results also suggest that an ultracompact combustor (UCC) with high-g cavity (HGC) will be limited to centrifugal force levels in the 2000–3000 g range.


Author(s):  
Alejandro M. Briones ◽  
Balu Sekar ◽  
Timothy Erdmann

The effect of centrifugal force on flame propagation velocity of stoichiometric propane-, kerosene-, and n-octane-air turbulent premixed flames was numerically examined. The quasi-turbulent numerical model was set in an unsteady two-dimensional geometry with finite length in the transverse and streamwise directions but with infinite length in the spanwise direction. There was relatively good comparison between literature-reported measurements and predictions of propane-air flame propagation velocity as a function of centrifugal force. It was found that for all mixtures the flame propagation velocity increases with centrifugal force. It reaches a maximum then falls off rapidly with further increases in centrifugal force. The results of this numerical study suggest there are no distinct differences among the three mixtures in terms of the effect of centrifugal force on the flame propagation velocity. There are, however, quantitative differences. The numerical models are set in a non-inertial, rotating reference frame. This rotation imposes a radially outward (centrifugal) force. The ignited mixture at one end of the tube raises the temperature and its heat release tends to laminarize the flow. The attained density difference combined with the direction of the centrifugal force promotes Rayleigh-Taylor instability. This instability with thermal expansion and turbulent flame speed constitute the flame propagation mechanism towards the other tube end. A wave is also originated but propagates faster than the flame. During propagation the flame interacts with eddies that wrinkle and/or corrugate the flame. The flame front wrinkles interact with streamtubes that enhance Landau-Darrieus (hydrodynamic) instability, giving rise to a corrugated flame. Under strong stretch conditions the stabilizing equidiffusive-curvature mechanism fails and the flame front breaks up, allowing inflow of unburned mixture into the flame. This phenomenon slows down the flame temporarily and then the flame speeds up faster than before. However, if corrugation is large and the inflow of unburned mixture into the flame is excessive, the latter locally quenches and slows down the flame. This occurs when the centrifugal force is large, tending to blowout the flame. The wave in the tube interacts continuously with the flame through baroclinic torques at the flame front that further enhances the above mentioned flame-eddies interactions. Only at low centrifugal forces the wave intermingles several times with the flame before the averaged flame propagation velocity is determined. The centrifugal force does not substantially increase the turbulent flame speed as commented by previous experimental investigations. The results also suggest that an ultra-compact combustor (UCC) with high-g cavity (HGC) will be limited to centrifugal force levels in the 2000–3000g range.


Author(s):  
Daniel de la Rosa ◽  
Andrew P. Crayford ◽  
Philip J. Bowen ◽  
Agustin Valera-Medina

Experimental studies of laminar ethanol - air gaseous flames have been undertaken in a large (34 l) cylindrical constant volume combustion bomb to investigate combustion fundamentals at varying ambient conditions. This vessel has been designed to minimise the influence of boundary walls, hence extending the quasi steady pressure region over which meaningful data may be obtained. Gaseous homogeneous mixtures are achieved by injecting liquid ethanol into the bomb which pre-vaporises prior to ignition. Initial pressure and equivalence ratio are predetermined using partial pressure methodology. Flame propagation is recorded utilising high-speed Schlieren photography, and low ignition energies were achieved via a variable discharge system enabling the sensitive early stages of flame propagation and extinction limits to be studied. Data is presented in terms of flame speed against stretch rate from which Markstein lengths and laminar burning velocities are derived for a variety of different initial conditions. The effect of ignition energy, initial pressure (from sub-atmospheric to elevated pressure) along with the effect of increasing initial temperature is studied. Results are discussed in terms of those of previous workers, and compared with predictions from detailed chemical kinetic schemes. Nonlinear trends witnessed during early stage flame propagation are further investigated as a suitable method for deriving extinction stretch rate.


Author(s):  
Sean D. Salusbury ◽  
Ehsan Abbasi-Atibeh ◽  
Jeffrey M. Bergthorson

Differential diffusion effects in premixed combustion are studied in a counter-flow flame experiment for fuel-lean flames of three fuels with different Lewis numbers: methane, propane, and hydrogen. Previous studies of stretched laminar flames show that a maximum reference flame speed is observed for mixtures with Le ≳ 1 at lower flame-stretch values than at extinction, while the reference flame speed for Le ≪ 1 increases until extinction occurs when the flame is constrained by the stagnation point. In this work, counter-flow flame experiments are performed for these same mixtures, building upon the laminar results by using variable high-blockage turbulence-generating plates to generate turbulence intensities from the near-laminar u′/SLo=1 to the maximum u′/SLo achievable for each mixture, on the order of u′/SLo=10. Local, instantaneous reference flamelet speeds within the turbulent flame are extracted from high-speed PIV measurements. Instantaneous flame front positions are measured by Rayleigh scattering. The probability-density functions (PDFs) of instantaneous reference flamelet speeds for the Le ≳ 1 mixtures illustrate that the flamelet speeds are increasing with increasing turbulence intensity. However, at the highest turbulence intensities measured in these experiments, the probability seems to drop off at a velocity that matches experimentally-measured maximum reference flame speeds in previous work. In contrast, in the Le ≪ 1 turbulent flames, the most-probable instantaneous reference flamelet speed increases with increasing turbulence intensity and can, significantly, exceed the maximum reference flame speed measured in counter-flow laminar flames at extinction, with the PDF remaining near symmetric for the highest turbulence intensities. These results are reinforced by instantaneous flame position measurements. Flame-front location PDFs show the most probable flame location is linked both to the bulk flow velocity and to the instantaneous velocity PDFs. Furthermore, hydrogen flame-location PDFs are recognizably skewed upstream as u′/SLo increases, indicating a tendency for the Le ≪ 1 flame brush to propagate farther into the unburned reactants against a steepening average velocity gradient.


Author(s):  
P. Griebel ◽  
R. Bombach ◽  
A. Inauen ◽  
R. Scha¨ren ◽  
S. Schenker ◽  
...  

The present experimental study focuses on flame characteristics and turbulent flame speeds of lean premixed flames typical for stationary gas turbines. Measurements were performed in a generic combustor at a preheating temperature of 673 K, pressures up to 14.4 bars (absolute), a bulk velocity of 40 m/s, and an equivalence ratio in the range of 0.43–0.56. Turbulence intensities and integral length scales were measured in an isothermal flow field with Particle Image Velocimetry (PIV). The turbulence intensity (u′) and the integral length scale (LT) at the combustor inlet were varied using turbulence grids with different blockage ratios and different hole diameters. The position, shape, and fluctuation of the flame front were characterized by a statistical analysis of Planar Laser Induced Fluorescence images of the OH radical (OH-PLIF). Turbulent flame speeds were calculated and their dependence on operating conditions (p, φ) and turbulence quantities (u′, LT) are discussed and compared to correlations from literature. No influence of pressure on the most probable flame front position or on the turbulent flame speed was observed. As expected, the equivalence ratio had a strong influence on the most probable flame front position, the spatial flame front fluctuation, and the turbulent flame speed. Decreasing the equivalence ratio results in a shift of the flame front position farther downstream due to the lower fuel concentration and the lower adiabatic flame temperature and subsequently lower turbulent flame speed. Flames operated at leaner equivalence ratios show a broader spatial fluctuation as the lean blow-out limit is approached and therefore are more susceptible to flow disturbances. In addition, because of a lower turbulent flame speed these flames stabilize farther downstream in a region with higher velocity fluctuations. This increases the fluctuation of the flame front. Flames with higher turbulence quantities (u′, LT) in the vicinity of the combustor inlet exhibited a shorter length and a higher calculated flame speed. An enhanced turbulent heat and mass transport from the recirculation zone to the flame root location due to an intensified mixing which might increase the preheating temperature or the radical concentration is believed to be the reason for that.


2018 ◽  
Vol 850 ◽  
pp. 784-802 ◽  
Author(s):  
Sheng Yang ◽  
Abhishek Saha ◽  
Zirui Liu ◽  
Chung K. Law

In this paper we study the essential role of Darrieus–Landau (DL), hydrodynamic, cellular flame-front instability in the propagation of expanding turbulent flames. First, we analyse and compare the characteristic time scales of flame wrinkling under the simultaneous actions of DL instability and turbulent eddies, based on which three turbulent flame propagation regimes are identified, namely, instability dominated, instability–turbulence interaction and turbulence dominated regimes. We then perform experiments over an extensive range of conditions, including high pressures, to promote and manipulate the DL instability. The results clearly demonstrate the increase in the acceleration exponent of the turbulent flame propagation as these three regimes are traversed from the weakest to the strongest, which are respectively similar to those of the laminar cellularly unstable flame and the turbulent flame without flame-front instability, and thus validating the scaling analysis. Finally, based on the scaling analysis and the experimental results, we propose a modification of the conventional turbulent flame regime diagram to account for the effects of DL instability.


Author(s):  
Holler Tadej ◽  
Ed M. J. Komen ◽  
Kljenak Ivo

The paper presents the computational fluid dynamics (CFD) combustion modeling approach based on two combustion models. This modeling approach was applied to a hydrogen deflagration experiment conducted in a large-scale confined experimental vessel. The used combustion models were Zimont's turbulent flame-speed closure (TFC) model and Lipatnikov's flame-speed closure (FSC) model. The conducted simulations are aimed to aid identifying and evaluating the potential hydrogen risks in nuclear power plant (NPP) containment. The simulation results show good agreement with experiment for axial flame propagation using the Lipatnikov combustion model. However, substantial overprediction in radial flame propagation is observed using both combustion models, which consequently results also in overprediction of the pressure increase rate and overall combustion energy output. As assumed for a large-scale experiment without any turbulence inducing structures, the combustion took place in low-turbulence regimes, where the Lipatnikov combustion model, due to its inclusion of quasi-laminar source term, has advantage over the Zimont model.


2019 ◽  
pp. 146808741987771 ◽  
Author(s):  
Behdad Afkhami ◽  
Yanyu Wang ◽  
Scott A Miers ◽  
Jeffrey D Naber

The current research experimentally studied flame speed and stretch under engine in-cylinder conditions. A direct-injection, spark-ignition, and optically accessible engine was utilized to image the flame propagation, and E10 was selected as the fuel. Also, three fuel–air mixtures (stoichiometric, lean, and rich) were examined. The flame front was located by processing high-speed images. This study introduces a novel approach for calculation of equivalent spherical flame radius for analysis of flame speed and stretch. Flame front propagation analysis showed that during the flame propagation period, the stretch decreased until the flame front touched the piston surface. This was a common trend for stoichiometric, lean, and rich mixtures, which occurred because the flame radius was the dominant factor in the stretch calculation. In addition, the rich fuel–air mixture showed a lower flame stretch compared to stoichiometric or lean mixture. This was the result of a lower Markstein number for the rich fuel–air mixture. To study the sensitivity of different fuel–air mixtures to the flame stretch, the trajectory of the flame centroid was tracked until the flame front touched the piston surface. The results showed that the end centroid for the lean mixture deviated from the start point more than those of the rich and stoichiometric mixtures because the lean mixture had a higher flame stretch and lower flame speed. Furthermore, comparing the flame stretch at three different engine speeds revealed that increasing the engine speed increased the flame stretch, especially during the early flame development period. According to previous studies which discussed flame stretch as a flame extinguishment mechanism, the probability of flame extinction is higher when the engine speed is higher. Also, uncertainty analysis was conducted to determine the effect of camera setting on the flame stretch. Results showed that a maximum relative uncertainty of 4.5% occurred during the early flame development.


Author(s):  
Tadej Holler ◽  
Varun Jain ◽  
Ed M. J. Komen ◽  
Ivo Kljenak

The CFD combustion modeling approach based on two combustion models was applied to a hydrogen deflagration experiment conducted in a large-scale confined experimental vessel. The used combustion models were Zimont’s Turbulent Flames Speed Closure (TFC) model and Lipatnikov’s Flame Speed Closure (FSC) model. The conducted simulations are aimed to aid identifying and evaluating the potential hydrogen risks in Nuclear Power Plant (NPP) containment. The simulation results show good agreement with experiment for axial flame propagation using the Lipatnikov combustion model. However substantial overprediction in radial flame propagation is observed using both combustion models, which consequently results also in overprediction of the pressure increase rate and overall combustion energy output. As assumed for a large-scale experiment without any turbulence inducing structures, the combustion took place in low-turbulence regimes, where the Lipatnikov combustion model, due to its inclusion of quasi-laminar source term, has advantage over the Zimont model.


Sign in / Sign up

Export Citation Format

Share Document