Effect of Centrifugal Force on Turbulent Premixed Flames

Author(s):  
Alejandro M. Briones ◽  
Balu Sekar ◽  
Timothy Erdmann

The effect of centrifugal force on flame propagation velocity of stoichiometric propane–, kerosene–, and n-octane–air turbulent premixed flames was numerically examined. The quasi-turbulent numerical model was set in an unsteady two-dimensional (2D) geometry with finite length in the transverse and streamwise directions but with infinite length in the spanwise direction. There was relatively good comparison between literature-reported measurements and predictions of propane–air flame propagation velocity as a function of centrifugal force. It was found that for all mixtures the flame propagation velocity increases with centrifugal force. It reaches a maximum, then falls off rapidly with further increases in centrifugal force. The results of this numerical study suggest that there are no distinct differences among the three mixtures in terms of the trends seen of the effect of centrifugal force on the flame propagation velocity. There are, however, quantitative differences. The numerical model is set in a noninertial, rotating reference frame. This rotation imposes a radially outward (centrifugal) force. The ignited mixture at one end of the tube raises the temperature and its heat release tends to laminarize the flow. The attained density difference combined with the direction of the centrifugal force promotes Rayleigh–Taylor instability. This instability with thermal expansion and turbulent flame speed constitute the flame propagation mechanism towards the other tube end. A wave is also generated from the ignition zone but propagates faster than the flame. During propagation the flame interacts with eddies that wrinkle and/or corrugate the flame. The flame front wrinkles interact with streamtubes that enhance Landau–Darrieus (hydrodynamic) instability, giving rise to a corrugated flame. Under strong stretch conditions the stabilizing equidiffusive-curvature mechanism fails and the flame front breaks up, allowing inflow of unburned mixture into the flame. This phenomenon slows down the flame temporarily and then the flame speeds up faster than before. However, if corrugation is large and the inflow of unburned mixture into the flame is excessive, the latter locally quenches and slows down the flame. This occurs when the centrifugal force is large, tending to blowout the flame. The wave in the tube interacts continuously with the flame through baroclinic torques at the flame front that further enhances the above mentioned flame–eddy interactions. Only at low centrifugal forces, the wave intermingles several times with the flame before the averaged flame propagation velocity is determined. The centrifugal force does not substantially increase the turbulent flame speed as commented by previous experimental investigations. The results also suggest that an ultracompact combustor (UCC) with high-g cavity (HGC) will be limited to centrifugal force levels in the 2000–3000 g range.

Author(s):  
Alejandro M. Briones ◽  
Balu Sekar ◽  
Timothy Erdmann

The effect of centrifugal force on flame propagation velocity of stoichiometric propane-, kerosene-, and n-octane-air turbulent premixed flames was numerically examined. The quasi-turbulent numerical model was set in an unsteady two-dimensional geometry with finite length in the transverse and streamwise directions but with infinite length in the spanwise direction. There was relatively good comparison between literature-reported measurements and predictions of propane-air flame propagation velocity as a function of centrifugal force. It was found that for all mixtures the flame propagation velocity increases with centrifugal force. It reaches a maximum then falls off rapidly with further increases in centrifugal force. The results of this numerical study suggest there are no distinct differences among the three mixtures in terms of the effect of centrifugal force on the flame propagation velocity. There are, however, quantitative differences. The numerical models are set in a non-inertial, rotating reference frame. This rotation imposes a radially outward (centrifugal) force. The ignited mixture at one end of the tube raises the temperature and its heat release tends to laminarize the flow. The attained density difference combined with the direction of the centrifugal force promotes Rayleigh-Taylor instability. This instability with thermal expansion and turbulent flame speed constitute the flame propagation mechanism towards the other tube end. A wave is also originated but propagates faster than the flame. During propagation the flame interacts with eddies that wrinkle and/or corrugate the flame. The flame front wrinkles interact with streamtubes that enhance Landau-Darrieus (hydrodynamic) instability, giving rise to a corrugated flame. Under strong stretch conditions the stabilizing equidiffusive-curvature mechanism fails and the flame front breaks up, allowing inflow of unburned mixture into the flame. This phenomenon slows down the flame temporarily and then the flame speeds up faster than before. However, if corrugation is large and the inflow of unburned mixture into the flame is excessive, the latter locally quenches and slows down the flame. This occurs when the centrifugal force is large, tending to blowout the flame. The wave in the tube interacts continuously with the flame through baroclinic torques at the flame front that further enhances the above mentioned flame-eddies interactions. Only at low centrifugal forces the wave intermingles several times with the flame before the averaged flame propagation velocity is determined. The centrifugal force does not substantially increase the turbulent flame speed as commented by previous experimental investigations. The results also suggest that an ultra-compact combustor (UCC) with high-g cavity (HGC) will be limited to centrifugal force levels in the 2000–3000g range.


Author(s):  
Behdad Afkhami ◽  
Yanyu Wang ◽  
Scott A. Miers ◽  
Jeffrey D. Naber

Since fossil fuels will remain the main source of energy for power generation and transportation in next decades, their combustion processes remain an important concern for the foreseeable future. For liquid or gaseous fuels, flame velocity that propagates normal to itself and relative to the flow into the unburned mixture is one of the most important quantities to study. In a non-uniform flow, a curved flame front area changes continually which is known as flame stretch. The concept becomes more important when it is realized that the stretch affects the turbulent flame speed. The current research empirically studies flame stretch under engine-like conditions since there has not been enough experimental studies in this area. For this reason, a one-cylinder, direct-injection, spark-ignition, naturally-aspirated optical engine was utilized to image the flame propagation process inside an internal combustion engine cylinder on the tumble plane. The flame front was found by processing high speed images which were taken from the flame inside the cylinder. Flame front propagation analysis showed that after the flame kernel was developed, during flame propagation period, the stretch rate decreased until the flame front touches the piston surface. This trend was common among stoichiometric, lean, and rich mixtures. In addition, the fuel-air mixture with λ = 0.85 showed lower stretch rate compared to stoichiometric or lean mixture with λ = 1.2. However, based on previous studies, further enrichment may result in the flame stretch rate become greater than that of the stretch rates for stoichiometric or lean mixtures. Also, comparing the stretch rate at two different engine speeds revealed that as the speed increased the stretch rate also increased; especially during the early flame development period. Therefore, according to previous studies which discussed flame stretch as a mechanism for flame extinguishment, the probability of the flame extinction is higher when the engine speed is higher.


2003 ◽  
Vol 2 (2) ◽  
Author(s):  
W. M. C. Dourado ◽  
P. Bruel ◽  
J. L. F. Azevedo

A pseudo-compressibility method for zero Mach number turbulent reactive flows with heat release is combined with an unstructured finite volume hybrid grid scheme. The spatial discretization is based on an overlapped cell vertex approach. An infinite freely planar flame propagating into a turbulent medium of premixed reactants is considered as a test case. The recourse to a flamelet combustion modeling for which the reaction rate is quenched in a continuous way ensures the uniqueness of the turbulent flame propagation velocity. To integrate the final form of discretized governing equations, a three-stage hybrid time-stepping scheme is used and artificial dissipation terms are added to stabilize the convergence path towards the final steady solution. The results obtained with such a numerical procedure prove to be in good agreement with those reported in the literature on the very same flow geometry. Indeed, the flame structure as well as its propagation velocity are accurately predicted thus confirming the validity of the approach followed and demonstrating that such a numerical procedure will be a valuable tool to deal with complex reactive flow geometries.


1997 ◽  
Vol 353 ◽  
pp. 83-114 ◽  
Author(s):  
DENIS VEYNANTE ◽  
THIERRY POINSOT

In most practical situations, turbulent premixed flames are ducted and, accordingly, subjected to externally imposed pressure gradients. These pressure gradients may induce strong modifications of the turbulent flame structure because of buoyancy effects between heavy cold fresh and light hot burnt gases. In the present work, the influence of a constant acceleration, inducing large pressure gradients, on a premixed turbulent flame is studied using direct numerical simulations.A favourable pressure gradient, i.e. a pressure decrease from unburnt to burnt gases, is found to decrease the flame wrinkling, the flame brush thickness, and the turbulent flame speed. It also promotes counter-gradient turbulent transport. On the other hand, adverse pressure gradients tend to increase the flame brush thickness and turbulent flame speed, and promote classical gradient turbulent transport. As proposed by Libby (1989), the turbulent flame speed is modified by a buoyancy term linearly dependent on both the imposed pressure gradient and the integral length scale lt.A simple model for the turbulent flux u″c″ is also proposed, validated from simulation data and compared to existing models. It is shown that turbulent premixed flames can exhibit both gradient and counter-gradient transport and a criterion integrating the effects of pressure gradients is derived to differentiate between these regimes. In fact, counter-gradient diffusion may occur in most practical ducted flames.


Sign in / Sign up

Export Citation Format

Share Document