Predicting the Cetane Number, Yield Sooting Index, Kinematic Viscosity, and Cloud Point for Catalytically Upgraded Pyrolysis Oil Using Artificial Neural Networks

Author(s):  
Travis Kessler ◽  
Thomas Schwartz ◽  
Hsi-Wu Wong ◽  
J. Hunter Mack

Abstract The conversion of biomass using fast pyrolysis has the potential to be significantly less expensive at scale compared to alternative methods such as fermentation and gasification. Selective upgrading of the products of fast pyrolysis through chemical catalysis produces compounds with lower oxygen content and lower acidity; however, identifying the specific catalytic pathways for producing viable fuels and fuel additives often requires a trial-and-error approach. Specifically, key properties of the compounds must be experimentally tested to evaluate the viability of the resultant compounds. The present work proposes predictive models constructed with artificial neural networks (ANNs) for cetane number (CN), yield sooting index (YSI), kinematic viscosity (KV), and cloud point (CP), with blind test set median absolute errors of 5.14 cetane units, 3.36 yield sooting index units, 0.07 millimeters squared per second, and 4.89 degrees Celsius, respectively. Furthermore, the cetane number, yield sooting index, kinematic viscosity, and cloud point were predicted for over three hundred expected products from the catalytic upgrading of pyrolysis oil. It was discovered that 130 of these compounds have predicted cetane numbers greater than 40, with four of these compounds possessing predicted yield sooting index values significantly less than that of diesel fuel and predicted viscosities and cloud points comparable to that of diesel fuel.

Author(s):  
Volodymyr Drevetskiy ◽  
Marko Klepach

An intelligent system, based on hydrodynamic method and artificial neural networks usage for automotive fuels quality definition have been developed. Artificial neural networks optimal structures for the octane number of gasoline, cetane number, cetane index of diesel fuel definition have been substantiated and their accuracy has been analyzed. The implementation of artificial neural networks by means of microcontroller-based systems has been considered.


2021 ◽  
Author(s):  
Travis Kessler ◽  
Thomas Schwartz ◽  
Hsi-Wu Wong ◽  
J. Hunter Mack

Abstract The use of biomass-derived additives in diesel fuel mixtures has the potential to increase the fuel’s efficiency, decrease the formation of particulate matter during its combustion, and retain the fuel’s behavior in cold weather. To this end, identifying compounds that enable these behaviors is paramount. The present work utilizes a series of linear and non-linear equations in series with artificial neural networks to predict the cetane number, yield sooting index, kinematic viscosity, cloud point, and lower heating value of multi-component blends. Property values of pure components are predicted using artificial neural networks trained with existing experimental data, and these predictions and their expected errors are propagated through linear and non-linear equations to obtain property predictions for multi-component blends. Individual component property prediction errors, defined by blind prediction median absolute error, are 4.91 units, 7.84 units, 0.06 cSt, 4.00 °C, and 0.55 MJ/kg for cetane number, yield sooting index, kinematic viscosity, cloud point, and lower heating value respectively. On average, property predictions for blends are shown to be accurate to within 6% of the blends’ experimental values. Further, a multitude of compounds expected to be produced from catalytically upgrading products of fast pyrolysis are evaluated with respect to their behavior in diesel fuel blends.


2013 ◽  
Vol 65 ◽  
pp. 255-261 ◽  
Author(s):  
Ramón Piloto-Rodríguez ◽  
Yisel Sánchez-Borroto ◽  
Magin Lapuerta ◽  
Leonardo Goyos-Pérez ◽  
Sebastian Verhelst

2021 ◽  
Author(s):  
Idris cesur ◽  
Aslan Çoban ◽  
Beytullah Eren

Abstract Alternative energy sources are needed to meet the energy needs of the rapidly increasing population and developing industry and to increase the efficiency of the systems. In internal combustion engines, biodiesel is used as an alternative fuel for both being an alternative energy source and having a better efficiency compared to diesel fuel. Efficiency loss in the engines is largely due to friction and wear between the piston ring (PR) and the cylinder liner (CL). Different lubrication regimes in engines have substantial effects on wear and friction. In the present study, the effects of diesel and biodiesel (chicken oil methyl ester, COME) fuels on friction and wear in different loads (40-60-80-100 N) and speeds (60-90-120-150 rpm) were examined using the Taguchi experimental design method. In addition, an artificial neural networks (ANNs) model is utilized for modeling the wear at the cylinder liner (CL) and the piston rings (PR) using different fuel types, speeds and loads. As a result of the study, biodiesel fuel has a lower friction coefficient and abrasion in all load and cycle intervals due to its high viscosity and lubrication properties compared to diesel fuel. Besides, the developed ANN model has good predictive capability for the wear at the CL and the PR according to perfect match between experimental and modeling results.


2018 ◽  
Vol 22 (1) ◽  
pp. 179-205 ◽  
Author(s):  
Mert Gulum ◽  
Funda Kutlu Onay ◽  
Atilla Bilgin

Abstract Nowadays, biodiesel and vegetable oils have received increasing attention as renewable clean alternative fuels to fossil diesel fuel because of decreasing petroleum reserves and increasing environmental concerns. However, the straight use of biodiesel and vegetable oils in pure form results in several operational and durability problems in diesel engines because of their higher viscosity than fossil diesel fuel. One of the most used methods for solving the high viscosity problem is to blend them with fossil diesel fuel or alcohol. The reliable viscosity and density data of various biodiesel-diesel-alcohol ternary blends or biodiesel-diesel binary blends are plentifully available in existing literature, however, there is still the scarcity of dependable measurement values on different biodiesel-diesel-vegetable oil ternary blends at various temperatures. Therefore, in this study, waste cooking oil biodiesel (ethyl ester) was produced, and it was blended with fossil diesel fuel and waste cooking oil at different volume ratios to prepare ternary blends. Viscosities and densities of the ternary blends were determined at different temperatures according to DIN 53015 and ISO 4787 standards, respectively. The variation in viscosity with respect to temperature and oil fraction and the change of density vs. temperature were evaluated, rational and exponential models were proposed for these variations, and these models were tested against the density and viscosity data measured by the authors, Nogueira et al. and Baroutian et al. by comparing them to Gupta et al. model, linear model, Cragoe model and ANN (artificial neural networks) previously recommended in existing literature.


2014 ◽  
Vol 57 ◽  
pp. 877-885 ◽  
Author(s):  
Y. Sánchez-Borroto ◽  
R. Piloto-Rodriguez ◽  
M. Errasti ◽  
R. Sierens ◽  
S. Verhelst

Sign in / Sign up

Export Citation Format

Share Document