Convective Heat Transfer Performance of FC-72 in a Pin-Finned Channel

Author(s):  
Liang-Han Chien ◽  
S.-Y. Pei ◽  
T.-Y. Wu

This study investigates the influence of the heat flux and mass velocity on convective heat transfer performance of FC-72 in a rectangular channel of 20mm in width and 2 mm in height. The heated side has either a smooth surface or a pin-finned surface. The inlet fluid temperature is maintained at 30°C. The total length of the test channel is 113 mm, with a heated length of 25mm. The flow rate varies between 80 and 960 ml/min, and the heat flux sets between 18 and 50 W/cm2. The experimental results show that the controlling variable is heat flux instead of flow rate because of the boiling activities in FC-72. At a fixed flow rate, the pin-finned surface yields up to 20% higher heat transfer coefficient and greater critical heat flux than those of a smooth surface.

Author(s):  
Liang-Han Chien ◽  
S.-Y. Pei ◽  
T.-Y. Wu

This study investigates the convective heat transfer performance of two fluids (water and FC-72) in a one side heated rectangular channel of 20mm in width and 2mm in height. The heated side has either a smooth surface or a pin-finned surface. The inlet fluid temperature was maintained at 30°C. The total length of the test channel was 113 mm, with a heated length of 25mm. The flow rate varied between 80 and 960 ml/min, and the heat flux was between 18 and 98 W/cm2. Single phase convection was the dominant heat transfer mechanism in the present water tests, and the performance was mainly controlled by flow rate. Contrarily, the heat flux was the major factor for the heat transfer performance in FC-72 as a result of the dominant boiling effect. At a fixed flow rate, the pin-finned surface yielded up to 30% higher heat transfer coefficient and greater critical heat flux than those of a smooth surface. The convective heat transfer coefficient of FC-72 was greater than water at low flow rates (80∼160 ml/min) and heat fluxes between 18 and 35 W/cm2. However, the heat transfer performance of water was superior to FC-72 at high flow rates.


2022 ◽  
Vol 171 ◽  
pp. 107243
Author(s):  
Javier Gil-Font ◽  
Nuria Navarrete ◽  
Estefanía Cervantes ◽  
Rosa Mondragón ◽  
Salvador F. Torró ◽  
...  

Author(s):  
Chi Young Lee ◽  
Chang Hwan Shin ◽  
Wang Kee In ◽  
Dong Seok Oh ◽  
Tae Hyun Chun

The convective heat transfer of rod bundle flow with spacer grid was investigated preliminarily for nuclear reactor core application. As the test fluid, the water was used. To simulate the nuclear fuel assembly, 4×4 rod bundle with P/D (=pitch between rods/rod diameter) of ∼1.35 was prepared together with a spacer grid with twist-mixing vane. A single heated section with five thermocouples embedded in the surface along the circumferential direction was installed around the center subchannel. The measurements of wall temperatures were carried out upstream and downstream of spacer grid. For the rod bundle flow at the inlet of spacer grid (i.e., upstream of spacer grid), the wall temperatures at the gap and subchannel centers exhibited the higher and lower, respectively, which was because in the subchannel center, the axial flow velocity became higher, as compared with the gap center. On the other hand, downstream of spacer grid, the rod wall toward the tip of twist-mixing vane showed the lowest temperature in the measurements along the circumferential direction of rod wall. Near the twist-mixing vane, the averaged wall temperature was observed to be remarkably low, which implies that the twist-mixing vane is an effective tool to enhance the convective heat transfer performance. However, along the axial flow direction behind the spacer grid, the averaged wall temperatures became to increase, and the enhancement of convective heat transfer performance by mixing vane faded away.


Author(s):  
J. W. Bramall ◽  
T. C. Daniels

One of the main problems with heat transfer research in the critical region is the lack of accurate thermodynamic and transport property data. This lack of information makes the actual heat transfer performance very difficult to correlate, whilst the extreme property variations produce other effects, which are also dependent on the heating surface geometry. Three fluids, carbon dioxide, nitrous oxide, and chlorotrifluoromethane, were therefore tested with a view to establishing whether they had similar regions of heat transfer and whether any similarity with boiling existed. The results show that in the critical region the normal convective heat transfer is augmented by a process to give results which look very like the lower portion of the normal boiling curve. Finally the authors show evidence to support the theory that there are preferential areas of heat transfer in the supercritical region.


Author(s):  
Liang-Han Chien ◽  
Han-Yang Liu ◽  
Wun-Rong Liao

A heat sink integrating micro-channels with multiple jets was designed to achieve better heat transfer performance for chip cooling. Dielectric fluid FC-72 was the working fluid. The heat sink contained 11 micro-channels, and each channel was 0.8 mm high, 0.6 mm wide, and 12 mm in length. There were 3 or 5 pores on each micro-channel. The pore diameters were either 0.24 or 0.4 mm, and the pore spacing ranged from 1.5 to 3 mm. In the tests, the saturation temperature of cooling device was set at 30 and 50°C, and the volume flow rate ranged from 9.1 to 73.6 ml/min per channel (total flow rate = 100∼810 ml/min). The experimental result showed that heat transfer performance increased with increasing flow rate for single phase heat transfer. For heat flux between 20 and 100 kW/m2, the wall superheat decreases with increasing flow rate at a fixed heat flux. However, the influence of the flow rate diminished when the channels are in two phase heat transfer regime. Except for the lowest flow rate (9.1 ml/min), the heat transfer performance increased with increasing jet diameter/spacing ratios. The best surface had three nozzles of 0.4 mm diameter in 3.0 mm jet spacing. It had the lowest thermal resistance of 0.0611 K / W in the range of 200 ∼ 240 W heat input.


Fractals ◽  
2019 ◽  
Vol 27 (07) ◽  
pp. 1950111
Author(s):  
WEI YU ◽  
LUYAO XU ◽  
SHUNJIA CHEN ◽  
FENG YAO

A two-dimensional model is developed to numerically study the water flow boiling through a tree-shaped microchannel by VOF method. In this work, the bubble dynamics and flow patterns along the channel are examined. Additionally, the pressure drop, heat transfer performance and the effects of mass flow rate and heat flux on the heat transfer coefficient are analyzed and discussed. The numerical results indicate that, there are three main bubble dynamic behaviors at the wall, namely coalesce-lift-off, coalesce-slide and coalesce-reattachment. At the bifurcation in high branching level, the slug bubbles may coalesce or breakup. The flow patterns of bubbly, bubbly-slug flows occur at low branching level and slug flow occurs at high branching level. The passage of bubbles causes the increasing of fluid temperature and local pressure. Additionally, the pressure drop decreases with the branching level. The flow pattern and channel confinement effect play a vital role in heat transfer performance. The nucleate boiling dominant heat transfer is observed at low branching level, the heat transfer performance is enhanced with increasing branching level from [Formula: see text] to 2. While, at high branching level, the heat transfer performance becomes weaker due to the suppression of nucleate boiling. Moreover, the heat transfer coefficient increases with the mass flow rate and heat flux.


Sign in / Sign up

Export Citation Format

Share Document