scholarly journals Identification of two phase flow regimes by void fraction measurements

2005 ◽  
Vol 27 (1) ◽  
pp. 59-65
Author(s):  
Bui Dinh Tri

This paper will present a method to identify flow patterns (bubble & slug flow) in vertical air-water two-phase flow by void fraction measurement (using an impedance probe) at Inst. of Mechanics Hanoi.

Author(s):  
Hideo Ide ◽  
Kentaro Satonaka ◽  
Tohru Fukano

Experiments were performed to obtain, analyze and clarify the mean void fraction, the mean liquid holdup, and the liquid slug velocity and the air-water two-phase flow patterns in horizontal rectangular microchannels, with the dimensions equal to 1.0 mm width × 0.1 mm depth, and 1.0 mm width × 0.2 mm depth, respectively. The flow patterns such as bubble flow, slug flow and annular flow were observed. The microchannel data showed similar data patterns compared to those in minichannels with the width of 1∼10mm and the depth of 1mm which we had previously reported on. However, in a 1.0 × 0.1 mm microchannel, the mean holdup and the base film thickness in annular flow showed larger values because the effects of liquid viscosity and surface tension on the holdup and void fraction dominate. The remarkable flow characteristics of rivulet flow and the flow with a partial dry out of the channel inner wall were observed in slug flow and annular flow patterns in the microchannel of 0.1 mm depth.


2021 ◽  
Author(s):  
Faraj Ben Rajeb ◽  
Syed Imtiaz ◽  
Yan Zhang ◽  
Amer Aborig ◽  
Mohamed M. Awad ◽  
...  

Abstract Slug flow is one of the most common flow patterns in non-Newtonian two-phase flow in pipes. It is a very common occurrence in gas-liquid two-phase flow in the pipe. Usually, it is an unfavorable flow pattern due to its unsteady nature, intermittency as well as high pressure drop. The differences between slug flow and elongated bubble flow are not clear because usually these two types of flow combined under one flow category. In general, these two-phase flow regimes are commonly defined as intermittent flow. In the present study, pressure gradient, and wave behavior in slug flow have been investigated depending on experimental work. In addition, void fraction has been estimated regarding available superficial liquid and gas velocities. The experimental records of superficial velocities of gas and liquid for slug flow and other flow patterns is used to create flow regime map for the gas non-Newtonian flow system. The effect of investigated flow regime velocities for non-Newtonian/gas flow on pressure drop and void fraction is reported. Pressure drop has been discovered to be reduced in slug flow more than other flow patterns due to high shear thinning behavior.


1995 ◽  
Vol 119 (3) ◽  
pp. 182-194 ◽  
Author(s):  
S. M. Ghiaasiaan ◽  
K. E. Taylor ◽  
B. K. Kamboj ◽  
S. I. Abdel-Khalik

2018 ◽  
Vol 115 ◽  
pp. 480-486 ◽  
Author(s):  
Bin Yu ◽  
Wenxiong Zhou ◽  
Liangming Pan ◽  
Hang Liu ◽  
Quanyao Ren ◽  
...  

Author(s):  
Isao Kataoka ◽  
Kenji Yoshida ◽  
Tsutomu Ikeno ◽  
Tatsuya Sasakawa ◽  
Koichi Kondo

Accurate analyses of turbulence structure and void fraction distribution are quite important in designing and safety evaluation of various industrial equipments using gas-liquid two-phase flow such as nuclear reactor, etc. Using turbulence model of two-phase flow and models of bubble behaviors in bubble flow and slug flow, systematic analyses of distributions of void fraction, averaged velocity and turbulent velocity were carried out and compared with experimental data. In bubbly flow, diffusion of bubble and lift force are dominant in determining void fraction distribution. On the other hand, in slug flow, large scale turbulence eddies which convey bubbles into the center of flow passage are important in determining void fraction distribution. In turbulence model, one equation turbulence model is used with turbulence generation and turbulence dissipation due to bubbles. Mixing length due to bubble is also modeled. Using these bubble behavior models and turbulence models, systematic predictions were carried out for void distributions and turbulence distributions for wide range of flow conditions of two phase flow including bubbly and slug flow. The results of predictions were compared with experimental data in round straight tube with successful agreement. In particular, concave void distributions in bubbly flow and convex distribution in slug flow were well predicted based on the present model.


Author(s):  
Shao-Wen Chen ◽  
Caleb S. Brooks ◽  
Chris Macke ◽  
Takashi Hibiki ◽  
Mamoru Ishii ◽  
...  

In order to investigate the possible effect of seismic vibration on two-phase flow dynamics and thermal-hydraulics of a nuclear reactor, experimental tests of adiabatic air-water two-phase flow under low-frequency vibration were carried out in this study. An eccentric cam vibration module operated at low motor speed (up to 390rpm) was attached to an annulus test section which was scaled down from a prototypic BWR fuel assembly sub-channel. The inner and outer diameters of the annulus are 19.1mm and 38.1mm, respectively. The two-phase flow operating conditions cover the ranges of 0.03≤<jg> ≤1.46m/s and 0.25≤<jf>≤1.00m/s and the vibration displacement ranges from ±0.8mm to ±22.2mm. Steady-state area-averaged instantaneous and time-averaged void fraction was recorded and analyzed in stationary and vibration experiments. A neural network flow regime identification technique and fast Fourier transformation (FFT) analysis were introduced to analyze the flow regimes and void signals under stationary and vibration conditions. Experimental results reveal possible changes in flow regimes under specific flow and vibration conditions. In addition, the instantaneous void fraction signals were affected and shown by FFT analysis. Possible reasons for the changes include the applied high acceleration and/or induced resonance at certain ports under the specific flow and vibration conditions.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 216
Author(s):  
Álvaro Roberto Gardenghi ◽  
Erivelto dos Santos Filho ◽  
Daniel Gregório Chagas ◽  
Guilherme Scagnolatto ◽  
Rodrigo Monteiro Oliveira ◽  
...  

Void fraction is one of the most important parameters for the modeling and characterization of two-phase flows. This manuscript presents an overview of void fraction measurement techniques, experimental databases and correlations, in the context of microchannel two-phase flow applications. Void fraction measurement techniques were reviewed and the most suitable techniques for microscale measurements were identified along its main characteristics. An updated void fraction experimental database for small channel diameter was obtained including micro and macrochannel two-phase flow data points. These data have channel diameter ranging from 0.5 to 13.84 mm, horizontal and vertical directions, and fluids such as air-water, R410a, R404a, R134a, R290, R12 and R22 for both diabatic and adiabatic conditions. New published void fraction correlations as well high cited ones were evaluated and compared to this small-diameter void fraction database in order to quantify the prediction error of them. Moreover, a new drift flux correlation for microchannels was also developed, showing that further improvement of available correlations is still possible. The new correlation was able to predict the microchannel database with mean absolute relative error of 9.8%, for 6% of relative improvement compared to the second-best ranked correlation for small diameter channels.


Author(s):  
Bai Bofeng ◽  
Liu Maolong ◽  
Su Wang ◽  
Zhang Xiaojie

An experimental study was conducted on the air-water two-phase flow patterns in the bed of rectangular cross sections containing spheres of regular distribution. Three kinds of glass spheres with different diameters (3 mm, 6 mm, and 8 mm) were used for the establishment of the test section. By means of visual observations of the two-phase flow through the test section, it was discovered that five different flow patterns occurred within the experimental parameter ranges, namely, bubbly flow, bubbly-slug flow, slug flow, slug-annular flow, and annular flow. A correlation for the bubble and slug diameter in the packed beds was proposed, which was an extended expression of the Tung/Dhir model, Jamialahmadi’s model, and Schmidt’s model. Three correlations were proposed to calculate the void friction of the flow pattern transition in bubble flow, slug flow, and annular flow based on the bubble model in the pore region. The experimental result showed that the modified Tung and Dhir model of the flow pattern transition was in better agreement with the experimental data compared with Tung and Dhir’s model.


Author(s):  
W. G. Sim ◽  
N. W. Mureithi ◽  
M. J. Pettigrew

To understand the fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. The distributions of flow parameters across a pipe, such as gas velocity, liquid velocity and void fraction, may be assumed to follow a power law (Cheng 1998, Serizawa et al. 1975). The void fraction profile is, for example, uniform for bubbly flow while it is more or less parabolic for slug flow. In the present work, the average values of momentum flux, slip ratio, etc. are derived by integral analysis, based on approximate power law distributions. A parametric study with various distributions was performed. The existing empirical formulations for average void fraction, proposed by Wallis (1969), Zuber et al. (1967) and Ishii (1970), are considered to obtain the present results. In particular, the unsteady momentum flux for slug flow is approximated.


Sign in / Sign up

Export Citation Format

Share Document