Viscous Dissipation and Variable Properties Effect on Two Dimensional Conjugate Heat Transfer of Nanofluids in Microchannels

Author(s):  
A. Ramiar ◽  
A. A. Ranjbar

Laminar two dimensional forced convective heat transfer of Al2O3–water nanofluid in a horizontal microchannel has been studied numerically, considering axial conduction, viscous dissipation and variable properties effects. The existing criteria in the literature for considering viscous dissipation in energy equation are compared for different cases and the most proper one is applied for the rest of the paper. The results showed that nanoparticles enhance heat transfer characteristics of the channel and inversely, viscous dissipation causes the Nusselt number and friction factor to decrease. The viscous dissipation effect may be emphasized by increasing Reynolds number and decreased by raising the exerted heat flux. Also, it was found that there is a critical Reynolds number below which the average Nusselt number of the nanofluid changes abnormally with Reynolds number as a result of variable properties effect.

Author(s):  
Ricardo S. Va´squez ◽  
Antonio J. Bula

The conjugate heat transfer process of cooling a horizontal plate in steady state condition is studied. The model considers both solid and fluid regions in Cartesian coordinates. The problem was solved analytically, considering the fluid flowing in a laminar condition and hydrodynamically developed before any interaction with the heated body. The height of the fluid considered was enough to allow the generation of a thermal boundary layer without any restriction. The conservation of mass, momentum and energy equations were considered to turn the problem into a non dimensional form. The heated body presented a constant heat flux at the bottom side, and convective heat transfer at the top side in contact with the fluid. The other two boundary conditions are adiabatic. The energy equation was considered in the solid to turn it into a non dimensional form. The interface temperature was obtained from a regression using the Chebyshev polynomial approximation. As the problem deals with the cooling of a electronics components, the solution presents the mathematical solution of the energy equation for the solid, including the isothermal lines. The non dimensional form allows a thorough analysis of the problem, considering the influence of the different parameters in the conjugate heat transfer problem. The solution is compared with numerical solution of different problems, and the parameters considered are Reynolds number, plate thickness, Prandtl number, and solid thermal conductivity. The results obtained present isothermal lines, local Nusselt number, and average Nusselt number.


Author(s):  
Tarek M. Abdel-Salam

This study presents results for flow and heat transfer characteristics of two-dimensional rectangular impinging jets and three-dimensional circular impinging jets. Flow geometries under consideration are single and multiple impinging jets issued from a plane wall. Both confined and unconfined configurations are simulated. Effects of Reynolds number and the distance between the jets are investigated. Results are obtained with a finite volume computational fluid dynamics (CFD) code. Structured grids are used in all cases of the present study. Turbulence is treated with a two equation k-ε model. Different jet velocities have been examined corresponding to Reynolds numbers of 5,000 to 20,000. Results of the three-dimensional cases show that Reynolds number has no effect on the velocity distribution of the center jet. Results of both two-dimensional and three-dimensional cases show that Reynolds number highly affects the heat transfer and values of the Nusselt number. The maximum Nusselt number was always found at the stagnation point of the center jet.


Author(s):  
Muhammad M. Rahman ◽  
Phaninder Injeti

Effects of protrusions on heat transfer in a microtube and in a two-dimensional microchannel of finite wall thickness were investigated for various shapes and sizes of the protrusion. Calculations were done for incompressible flow of a Newtonian fluid with developing momentum and thermal boundary layers under uniform and discrete heating conditions. It was found that the local Nusselt number near the protrusions changes significantly with the variations of Reynolds number, height, width, and distance between protrusions, and the distribution of discrete heat sources. The results presented in the paper demonstrate that protrusions can be used advantageously for the enhancement of local heat transfer whereas the global performance may be enhanced or diminished based on the tube geometry.


2006 ◽  
Vol 129 (2) ◽  
pp. 220-231 ◽  
Author(s):  
P. Rajesh Kanna ◽  
Manab Kumar Das

Steady-state conjugate heat transfer study of a slab and a fluid is carried out for a two-dimensional laminar incompressible wall jet over a backward-facing step. Unsteady stream function-vorticity formulation is used to solve the governing equation in the fluid region. An explicit expression has been derived for the conjugate interface boundary. The energy equation in the fluid, interface boundary and the conduction equation in the solid are solved simultaneously. The conjugate heat transfer characteristics, Nusselt number are studied with flow property (Re), fluid property (Pr), and solid to fluid conductivity ratio (k). Average Nusselt number is compared with that of the nonconjugate case. As k is increased, average Nusselt number is increased, asymptotically approaching the non-conjugate value.


Author(s):  
Devaraj K

Abstract: The present computational study involves a flat plate subjected to combined effect of jet impingement and film cooling. A conjugate heat transfer model in conjunction with k-ω SST turbulence model is employed to study the turbulence effects. The effect of Reynolds number varying from 389 to 2140 on static temperature, Nusselt number and film cooling effectiveness has be discussed for the blowing ratios of 0.6, 0.8, 1.0. The variation in the size of vortices formed on the impinging surface with Reynolds number is studied. It has been observed that the local Nusselt number shows a rising trend with the increase in Reynolds number, while the static temperatures follow the downfall in its values. As a result, an enhancement in the effectiveness is observed, which is credited to the capabilities of combined impingement and film cooling. At Reynolds number of 972, the coolant jet is found to be attached to the surface, for this condition the heat transfer phenomena for blowing ratios of 0.6, 0.8, 1.0, 1.2, 1.6, 2.0, 2.4, 2.6 are studied to understand the flow distribution on the plate surface. Keywords: Jet impingement, film cooling, effectiveness, conjugate heat transfer


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. Ramiar ◽  
A. A. Ranjbar

Laminar two-dimensional forced convective heat transfer of CuO-water and Al2O3-water nanofluids in a horizontal microchannel has been studied numerically, considering axial conduction effects in both solid and liquid regions and variable thermal conductivity and dynamic viscosity. The results show that using nanoparticles with higher thermal conductivities will intensify enhancement of heat transfer characteristics and slightly increases shear stress on the wall. The obtained results show more steep changes in Nusselt number for lower diameters and also higher values of Nusselt number by decreasing the diameter of nanoparticles. Also, by utilizing conduction number as the criterion, it was concluded from the results that adding nanoparticles will intensify the axial conduction effect in the geometry considered.


Author(s):  
Dipankar Sahoo ◽  
M. A. R. Sharif

The flow and heat transfer characteristics in the cooling of a heated surface by impinging confined jets have been investigated numerically through the steady state solution of laminar two-dimensional Navier-Stokes and energy equations. The principal objective of this study is to investigate the effect of buoyancy on the associated heat transfer process. Numerical computations are done for vertically downward directed two-dimensional confined slot jets impinging on a hot isothermal surface at the bottom. The computed flow patterns and isotherms for various domain aspect ratios and for a range of jet exit Reynolds numbers (100–500) and Richardson numbers (0–10) are analyzed to understand the heat transfer phenomena. The local and average Nusselt numbers at the hot surface for various conditions are compared. It is observed that for a given domain aspect ratio and Richardson number, the average Nusselt number at the hot surface increases with increasing jet exit Reynolds number. On the other hand, for a given aspect ratio and Reynolds number the average Nusselt number does not change significantly with Richardson number indicating that the buoyancy effects are not very significant on the overall heat transfer process for the range of jet Reynolds number considered in this study.


1988 ◽  
Vol 192 ◽  
pp. 365-391 ◽  
Author(s):  
George E. Karniadakis ◽  
Bora B. Mikic ◽  
Anthony T. Patera

A classical transport enhancement problem is concerned with increasing the heat transfer in a system while minimizing penalties associated with shear stress, pressure drop, and viscous dissipation. It is shown by Reynolds' analogy that viscous dissipation in a wide class of flows scales linearly with the Nusselt number and quadratically with the Reynolds number. It thus follows that transport enhancement optimization is equivalent to a problem in hydrodynamic stability theory; a more unstable flow will achieve the same Nusselt number at a lower Reynolds number, and therefore at a fraction of the dissipative cost. This transport-stability theory is illustrated in a numerical study of supercritical (unsteady) two-dimensional flow in an eddy-promoter channel comprising a plane channel with an infinite periodic array of cylindrical obstructions.It is shown that the addition of small cylinders to a plane channel results in stability modes that are little changed in form or frequency from plane-channel Tollmien-Schlichting waves. However, eddy-promoter flows are dramatically less stable than their plane-channel counterparts owing to cylinder-induced shear-layer instability (with critical Reynolds numbers on the order of hundreds rather than thousands), and thus these flows yield heat transfer rates commensurate with those of a plane-channel turbulent flow but at much lower Reynolds number. Small-cylinder supercritical eddy-promoter flows are shown to roughly preserve the convective-diffusive Reynolds analogy, and it thus follows from the transport-stability theory that eddy-promoter flows achieve the same heat transfer rates as plane-channel turbulent flows while incurring significantly less dissipation.


1998 ◽  
Vol 120 (1) ◽  
pp. 84-91 ◽  
Author(s):  
D. L. Thomson ◽  
Y. Bayazitoglu ◽  
A. J. Meade

Flow in a torroidal duct is characterized by increased convective heat transfer and friction compared to a straight duct of the same cross section. In this paper the importance of the nonplanarity (torsion) of a helical duct with rectangular cross section is investigated. A previously determined low Dean number velocity solution is used in the decoupled energy equation for the hydrodynamically fully developed, thermally developing case. Torsion, known to increase the friction factor, is found to cause a decrease in the fully developed Nusselt number compared to pure torroidal flow. Therefore, it is recommended that torsion be minimized to enhance heat transfer.


Sign in / Sign up

Export Citation Format

Share Document