Boiling Heat Transfer Performance in a Spiraling Radial Inflow Microchannel Cold Plate

Author(s):  
Maritza Ruiz ◽  
Claire M. Kunkle ◽  
Jorge Padilla ◽  
Van P. Carey

This study presents an experimental exploration of flow boiling heat transfer in a spiraling radial inflow microchannel heat sink. The effect of surface wettability, fluid subcooling levels, and mass fluxes are considered in this type of heat sink for use in applications with high fluxes up to 300 W/cm2. The design of the heat sink provides an inward radial swirl flow between parallel, coaxial disks that form a microchannel of 300 μm and 1 cm radius with a single inlet and a single outlet. The channel is heated on one side through a copper conducting surface, while the opposite side is essentially adiabatic to simulate a heat sink scenario for electronics cooling. Flow boiling heat transfer and pressure drop data were obtained for this heat sink device using water at near atmospheric pressure as the working fluid for inlet subcooling levels from 20 to 81°C and mean mass flux levels ranging from 184 to 716 kg/m2s. To explore the effects of varying surface wetting, experiments were conducted with two different heated surfaces. One was a clean, machined copper surface with water equilibrium contact angles in the range of 14–40°, typical of common metal surfaces. The other was a surface coated with zinc oxide nanostructures that are superhydrophilic with equilibrium contact angles measured below 10°. During boiling, increased wettability resulted in quicker rewetting and smaller bubble departure diameter as indicated by reduced temperature oscillations during boiling and achieving higher maximum heat flux without dryout. Reducing inlet subcooling levels was also found to reduce the magnitude of oscillations in the oscillatory boiling regime. The highest heat transfer coefficients were seen in fully developed boiling with low subcooling levels as a result of heat transfer being dominated by nucleate boiling. The highest heat fluxes achieved were during partial subcooled flow boiling at 300 W/cm2 with an average surface temperature of 134 °C and requiring a pumping power to heat rate ratio of 0.01%. The hydrophilic surface retained wettability after a series of boiling tests. Recommendations for use of this heat sink design in high flux applications is also discussed.

Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Tariq Ahmad

The present study focuses on the experimental investigation of boiling heat transfer characteristics and pressure drop in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 295 μm, width of 254 μm, and a length of 16 mm. Un-encapsulated Thermochromic liquid Crystals (TLC) are used in the present work to enable nonintrusive and high spatial resolution temperature measurements. This measuring technique is used to provide accurate full and local surface-temperature and heat transfer coefficient measurements. Experiments are carried out for mass velocities ranging between 290 to 457 kg/m2.s and heat fluxes from 6.04 to 13.06 W/cm2 using FC-72 as the working fluid. Experimental results show that the pressure drop increases as the exit quality and the flow rate increase. High values of heat transfer coefficient can be obtained at low exit quality (xe < 0.2). However, the heat transfer coefficient decreases sharply and remains almost constant as the quality increases for an exit quality higher than 0.2.


2006 ◽  
Vol 129 (10) ◽  
pp. 1321-1332 ◽  
Author(s):  
Dong Liu ◽  
Suresh V. Garimella

Flow boiling heat transfer to water in microchannels is experimentally investigated. The dimensions of the microchannels considered are 275×636 and 406×1063μm2. The experiments are conducted at inlet water temperatures in the range of 67–95°C and mass fluxes of 221–1283kg∕m2s. The maximum heat flux investigated in the tests is 129W∕cm2 and the maximum exit quality is 0.2. Convective boiling heat transfer coefficients are measured and compared to predictions from existing correlations for larger channels. While an existing correlation was found to provide satisfactory prediction of the heat transfer coefficient in subcooled boiling in microchannels, saturated boiling was not well predicted by the correlations for macrochannels. A new superposition model is developed to correlate the heat transfer data in the saturated boiling regime in microchannel flows. In this model, specific features of flow boiling in microchannels are incorporated while deriving analytical solutions for the convection enhancement factor and nucleate boiling suppression factor. Good agreement with the experimental measurements indicates that this model is suitable for use in analyzing boiling heat transfer in microchannel flows.


Author(s):  
Mayank I. Vyas ◽  
Salim A. Channiwala ◽  
Mitesh N. Prajapati

After reviewing the available literature on flow boiling heat transfer in mini/micro tubes and channels, it is felt that there is need for predictive correlations which is applicable over wide range of parameters. In present work a new correlation for two-phase flow boiling heat transfer coefficient is developed, which has considered nucleate boiling and convective boiling heat transfer effect. To develop this correlation we have considered total 651 data points, which have been collected from the open available literature covering different operational conditions and different dimensions of channels. We have selected CO2 as a working fluid because it does not contain chlorine, hence an efficient and environmentally safe refrigerant and would be potential replacement for R-22. CO2 has unusual heat transfer and two-phase flow characteristics, and is very different from those of conventional refrigerant. Also a comparison of present correlation with the best published correlation for CO2 is done. The results of this comparison indicate that the new developed correlation is superior to published best correlation for CO2. Present correlation is also compared with best published correlation for all fluids and with the correlation developed by using CO2 data. The results of these both case, indicate that the present correlation is superior.


Author(s):  
Fanghao Yang ◽  
Xiaochuan Li ◽  
Wenming Li ◽  
Chen Li

Two-phase microchannel heat sink is promising in cooling high power electronics with dielectric fluids. Compared to water, dielectric fluids can assure system safety in case of working fluid leakage. However, two-phase heat transfer of these hydrofluorocarbon refrigerants is restricted by their relatively low thermal conductivities and low latent heats. Numerous nanoscale/submicron structures have been developed to enhance the single and two-phase heat transfer in microchannels; but these techniques usually require nanoparticle seeds in multi-step wet processes or nanolithography to integrate these nanostructures. Therefore, most of these techniques were time-consuming and costly. In this study, we present a plasma etching method using a modified Bosch process to create silicon tips with nanoscale scallops in microchannels. This is a rapid and cost-effective method to integrate large density of nucleation sites without involving nanolithography method or using nanoparticle seeds. Then, these silicon tip arrays were aligned with side walls of microchannels. As a result, flow boiling heat transfer of a dielectric refrigerant, HFE-7000, is substantially enhanced in a microchannel heat sink (five parallel channels: 10 mm L × 220 μm W × 250 μm H). Compared to plain-wall microchannels, the average junction temperature can be reduced up to 10 °C at a heat flux of 55 W/cm2 and the equivalent thermal resistance of microchannel heat sink is reduced up to 31% at a mass flux of 1018 kg/m2·s.


2017 ◽  
Vol 139 (11) ◽  
Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

An experimental study on subcooled flow boiling with engineering fluid HFE-7000 in a microchannel fitted with piranha pin fins (PPFs) is presented. Heat fluxes of up to 735 W/cm2 were achieved and mass fluxes ranged from 618 kg/m2s to 2569 kg/m2 s. It was found that the flow boiling heat transfer was significantly enhanced with PPFs. The heat transfer coefficient with flow boiling was double the corresponding single-phase flow. Correlations for two-phase heat transfer coefficient and pressure drop in the nucleate flow boiling regime were developed based on the boiling, Weber, and Jakob numbers. The onset of nucleate boiling (ONB) and the critical heat flux (CHF) conditions were determined through visualization and was typically initiated from the last row of fins where temperatures were highest and flow rates lowest.


1999 ◽  
Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Manabu Mochizuki

Abstract The effect of solid particle introduction on subcooled-forced flow boiling heat transfer and a critical heat flux was examined experimentally. In the experiment, glass beads of 0.6 mm diameter were mixed in subcooled water. Experiments were conducted in a range of the subcooling of 40 K, a velocity of 0.17–6.7 m/s, a volumetric particle ratio of 0–17%. When particles were introduced, the growth of a superheated liquid layer near a heat trasnsfer surface seemed to be suppressed and the onset of nucleate boiling was delayed. The particles promoted the condensation of bubbles on the heat transfer surface, which shifted the initiation of a net vapor generation to a high heat flux region. Boiling heat trasnfer was augmented by the particle introduction. The suppression of the growth of the superheated liquid layer and the promotion of bubble condensation and dissipation by the particles seemed to contribute that heat transfer augmentation. The wall superheat at the critical heat flux was elevated by the particle introduction and the critical heat flux itself was also enhanced. However, the degree of the critical heat flux improvement was not drastic.


Author(s):  
Lorenzo Cremaschi

Driven by higher energy efficiency targets and industrial needs of process intensification and miniaturization, nanofluids have been proposed in energy conversion, power generation, chemical, electronic cooling, biological, and environmental systems. In space conditioning and in cooling systems for high power density electronics, vapor compression cycles provide cooling. The working fluid is a refrigerant and oil mixture. A small amount of lubricating oil is needed to lubricate and to seal the sliding parts of the compressors. In heat exchangers the oil in excess penalizes the heat transfer and increases the flow losses: both effects are highly undesired but yet unavoidable. This paper studies the heat transfer characteristics of nanorefrigerants, a new class of nanofluids defined as refrigerant and lubricant mixtures in which nano-size particles are dispersed in the high-viscosity liquid phase. The heat transfer coefficient is strongly governed by the viscous film excess layer that resides at the wall surface. In the state-of-the-art knowledge, while nanoparticles in the refrigerant and lubricant mixtures were recently experimentally studied and yielded convective in-tube flow boiling heat transfer enhancements by as much as 101%, the interactions of nanoparticles with the mixture still pose several open questions. The model developed in this work suggested that the nanoparticles in this excess layer generate a micro-convective mass flux transverse to the flow direction that augments the thermal energy transport within the oil film in addition to the macroscopic heat conduction and fluid convection effects. The nanoparticles motion in the shearing-induced and non-uniform shear rate field is added to the motion of the nanoparticles due to their own Brownian diffusion. The augmentation of the liquid phase thermal conductivity was predicted by the developed model but alone it did not fully explain the intensification on the two-phase flow boiling heat transfer coefficient reported in previous work in the literature. Thus, additional nano- and micro-scale heat transfer intensification mechanisms were proposed.


Author(s):  
Y. F. Xue ◽  
M. Z. Yuan ◽  
J. J. Wei

Experiments of flow boiling heat transfer coefficient of FC-72 were carried out over simulated silicon chip of 10×10×0.5 mm3 for electronic cooling. Four kinds of micro-pin-fins with the dimensions of 30×60, 30×120, 50×60, 50×120 μm2 (thickness, t × height, h) respectively, were fabricated on the chip surfaces by the dry etching technique to enhance boiling heat transfer. A smooth chip was also tested for comparison. The experiments were conducted at three different fluid velocities (0.5, 1 and 2m/s) and three different liquid subcoolings (15, 25 and 35K). All micro-pin-finned surfaces show a considerable heat transfer enhancement compared to the smooth surface. Both the forced convection and nucleate boiling heat transfer contribute to the total heat transfer performance. The contribution of each factor to the total heat transfer has been clearly presented in the flow boiling heat transfer coefficient curves. In a lower heat flux region, the heat transfer coefficient increases greatly with increasing fluid velocity, but increases slightly with increasing heat flux, indicating that the single-phase forced convection dominates the heat transfer process. With further increasing heat flux to the onset of nucleate boiling, the heat transfer coefficient increases remarkably. For a given liquid subcooling, the curves of flow boiling heat transfer coefficient at fluid velocities of 0.5 and 1 m/s almost follow one line for each surface, showing insensitivity of nucleate boiling heat transfer to fluid velocity. However, at the largest fluid velocity of 2 m/s, the slope of the flow boiling heat transfer coefficient curves for micro-pin-finned surfaces becomes smaller, indicating that the forced convection also plays an important role besides the nucleate boiling heat transfer. The curves of the flow boiling heat transfer coefficient can be used to determine the boiling incipience at different fluid velocities, which provides a basis for the suitable fluid velocity selection in designing highly efficient cooling scheme for electronic devices.


Author(s):  
Chaobin Dang ◽  
Minxia Li ◽  
Eiji Hihara

In this study, the boiling heat transfer coefficients of carbon dioxide with a PAG-type lubricating oil entrained from 0 to 5 wt% in a horizontally placed smooth tube with an inner diameter of 2 mm were experimentally investigated under the following operating conditions: mass fluxes from 170 to 320 kg/m2s, heat fluxes from 4.5 to 36 kW/m2, and a saturation temperature of 15 °C. The results show that for a low oil concentration of approximately 0.5% to 1%, no further deterioration of the heat transfer coefficient was observed at higher oil concentrations in spite of a significant decrement of the heat transfer coefficient compared to that under an oil-free condition. The heat flux still had a positive influence on the heat transfer coefficient in low quality regions. However, no obvious influence was observed in high quality regions, which implies that nucleate boiling dominates in the low quality region whereas it is suppressed in the high quality regions. Unlike the mass flux under an oil-free condition, mass flux has a significant influence on the heat transfer coefficient, with a maximum increase of 50% in the heat transfer. On the basis of our experimental measurements of the flow boiling heat transfer of carbon dioxide under wide experimental conditions, a flow boiling heat transfer model for horizontal tubes has been proposed for a mixture of CO2 and polyalkylene glycol (PAG oil) in the pre-dryout region, with consideration of the thermodynamic properties of the mixture. The surface tension and viscosity of the mixture were particularly taken into account. New factors were introduced into the correlation to reflect the suppressive effects of the mass flux and the oil on both the nucleate boiling. It is shown that the calculated results can depict the influence of the mass flux and the heat flux on both nucleate boiling and convection boiling.


Sign in / Sign up

Export Citation Format

Share Document