Validation of a New Lattice Physics Code GALAXY for PWRs

Author(s):  
Kazuya Yamaji ◽  
Hiroki Koike ◽  
Daisuke Sato ◽  
Shinobu Tsubota ◽  
Hideki Matsumoto

A new lattice physics and assembly calculation code GALAXY with the 172 energy-group ENDF/B-VII.0 library has been developed. GALAXY generates few group nuclear constants used in a new core simulator COSMO-S. The GALAXY code uses the many enhanced calculation method for more explicit treatment of neutronics characteristics. The outline of enhanced methods used in GALAXY and the qualification results are shown in this paper. From the qualifications in the continuous energy Monte Carlo benchmark, critical experiment analyses and post irradiation examination (PIE) analyses, GALAXY with the library was validated and the applicability of GALAXY to PWR nuclear design was confirmed.

Author(s):  
Yulong Qin ◽  
Hongchun Wu ◽  
Liangzhi Cao ◽  
Qingjie Liu

Resonance self-shielding calculation is very important in reactor physics calculation. Conventional resonance calculation method has some fundamental defects, which hinders its application in some problems. The Hyperfine Energy Group Resonance Calculation Method is studied in this paper and a code named UFOP is developed based on this method. In this method, the resonance energy range is divided into hyperfine energy intervals (tens of thousands) and the collision probabilities are calculated. Then the slowing-down equation is directly solved based on CPM (collision probability method). Some techniques are applied in solving the slowing-down equation for improving computational efficiency and reducing calculation error. A resonance benchmark problem with homogeneous and infinite material is calculated to validate the accuracy of the computation code and the hyper-fine group cross-section library utilized in the code. A PWR fuel cell is also calculated and the results are compared with MCNP. The results show good accuracy of this method and the validity of UFOP code.


2019 ◽  
Vol 62 (3) ◽  
pp. 577-586 ◽  
Author(s):  
Garnett P. McMillan ◽  
John B. Cannon

Purpose This article presents a basic exploration of Bayesian inference to inform researchers unfamiliar to this type of analysis of the many advantages this readily available approach provides. Method First, we demonstrate the development of Bayes' theorem, the cornerstone of Bayesian statistics, into an iterative process of updating priors. Working with a few assumptions, including normalcy and conjugacy of prior distribution, we express how one would calculate the posterior distribution using the prior distribution and the likelihood of the parameter. Next, we move to an example in auditory research by considering the effect of sound therapy for reducing the perceived loudness of tinnitus. In this case, as well as most real-world settings, we turn to Markov chain simulations because the assumptions allowing for easy calculations no longer hold. Using Markov chain Monte Carlo methods, we can illustrate several analysis solutions given by a straightforward Bayesian approach. Conclusion Bayesian methods are widely applicable and can help scientists overcome analysis problems, including how to include existing information, run interim analysis, achieve consensus through measurement, and, most importantly, interpret results correctly. Supplemental Material https://doi.org/10.23641/asha.7822592


2021 ◽  
Vol 2 (2) ◽  
pp. 132-151
Author(s):  
Vito Vitali ◽  
Florent Chevallier ◽  
Alexis Jinaphanh ◽  
Andrea Zoia ◽  
Patrick Blaise

Modal expansions based on k-eigenvalues and α-eigenvalues are commonly used in order to investigate the reactor behaviour, each with a distinct point of view: the former is related to fission generations, whereas the latter is related to time. Well-known Monte Carlo methods exist to compute the direct k or α fundamental eigenmodes, based on variants of the power iteration. The possibility of computing adjoint eigenfunctions in continuous-energy transport has been recently implemented and tested in the development version of TRIPOLI-4®, using a modified version of the Iterated Fission Probability (IFP) method for the adjoint α calculation. In this work we present a preliminary comparison of direct and adjoint k and α eigenmodes by Monte Carlo methods, for small deviations from criticality. When the reactor is exactly critical, i.e., for k0 = 1 or equivalently α0 = 0, the fundamental modes of both eigenfunction bases coincide, as expected on physical grounds. However, for non-critical systems the fundamental k and α eigenmodes show significant discrepancies.


2011 ◽  
Vol 168 (3) ◽  
pp. 226-241 ◽  
Author(s):  
Brian C. Kiedrowski ◽  
Forrest B. Brown ◽  
Paul P. H. Wilson

Sign in / Sign up

Export Citation Format

Share Document