Quality Assurance in the ITER Construction

Author(s):  
Sungkook Park ◽  
David Sands ◽  
Carlos Alejaldre

The ITER project is basically an engineering and construction project in order to build the ITER machine which is a scientific experimental fusion device. The seven members of the project have all created legal entities called Domestic Agencies to provide in-kind contributions to the ITER Organization (IO) for the supply of components which are manufactured by their suppliers. According to ITER agreement and due to nuclear safety involved in the fusion process, the project requires a license from the French Nuclear Safety Authority. One of nuclear safety regulations is the French Quality Order. The IO has established a Quality Assurance Program for the construction of the ITER machine to meet the requirements of the Order and to ensure that ITER activities are performed to achieve the safety and performance objectives of the ITER machine. The requirements in the program shall be followed by all performers involved in the project not only the IO, but DAs and their suppliers and subcontractors. This paper represents the quality requirements from the Order, and roles and responsibilities between each performer involved in the project. The paper also shows the main characteristics of the ITER Quality Assurance Program ensuring that all activities performed for the project conform to established and documented requirements.

Author(s):  
Akihide Hidaka

The Nuclear Safety Commission (NSC), Japan set up the taskforce on introduction of risk informed regulation (RIR) into nuclear safety regulations in April 2004. Since then the taskforce (Chairperson: Prof. Genki Yagawa, Toyo university) has reviewed the status of risk considerations at related organizations and discussed the issues for developing RIR in Japan. Recently, the taskforce prepared the interim report on the review results and discussions, and NSC approved it in December 2005. The report described that the risk consideration in related organizations in Japan has made progress in line mostly with the NSC’s basic policy for introduction of RIR expressed in 2003. However, the following topics were identified as important issues for further promotion of RIR introduction: policy for utilization of risk information considering Japanese features, usage of safety goals and performance objectives in RIR, decision-making process using risk information, pilot program, PSA quality, improvement of safety examination guidelines considering risk information, utilization of risk information in nuclear fuel cycle facilities and risk communication.


2004 ◽  
Vol 101 (Supplement3) ◽  
pp. 351-355 ◽  
Author(s):  
Javad Rahimian ◽  
Joseph C. Chen ◽  
Ajay A. Rao ◽  
Michael R. Girvigian ◽  
Michael J. Miller ◽  
...  

Object. Stringent geometrical accuracy and precision are required in the stereotactic radiosurgical treatment of patients. Accurate targeting is especially important when treating a patient in a single fraction of a very high radiation dose (90 Gy) to a small target such as that used in the treatment of trigeminal neuralgia (3 to 4—mm diameter). The purpose of this study was to determine the inaccuracies in each step of the procedure including imaging, fusion, treatment planning, and finally the treatment. The authors implemented a detailed quality-assurance program. Methods. Overall geometrical accuracy of the Novalis stereotactic system was evaluated using a Radionics Geometric Phantom Chamber. The phantom has several magnetic resonance (MR) and computerized tomography (CT) imaging—friendly objects of various shapes and sizes. Axial 1-mm-thick MR and CT images of the phantom were acquired using a T1-weighted three-dimensional spoiled gradient recalled pulse sequence and the CT scanning protocols used clinically in patients. The absolute errors due to MR image distortion, CT scan resolution, and the image fusion inaccuracies were measured knowing the exact physical dimensions of the objects in the phantom. The isocentric accuracy of the Novalis gantry and the patient support system was measured using the Winston—Lutz test. Because inaccuracies are cumulative, to calculate the system's overall spatial accuracy, the root mean square (RMS) of all the errors was calculated. To validate the accuracy of the technique, a 1.5-mm-diameter spherical marker taped on top of a radiochromic film was fixed parallel to the x–z plane of the stereotactic coordinate system inside the phantom. The marker was defined as a target on the CT images, and seven noncoplanar circular arcs were used to treat the target on the film. The calculated system RMS value was then correlated with the position of the target and the highest density on the radiochromic film. The mean spatial errors due to image fusion and MR imaging were 0.41 ± 0.3 and 0.22 ± 0.1 mm, respectively. Gantry and couch isocentricities were 0.3 ± 0.1 and 0.6 ± 0.15 mm, respectively. The system overall RMS values were 0.9 and 0.6 mm with and without the couch errors included, respectively (isocenter variations due to couch rotation are microadjusted between couch positions). The positional verification of the marker was within 0.7 ± 0.1 mm of the highest optical density on the radiochromic film, correlating well with the system's overall RMS value. The overall mean system deviation was 0.32 ± 0.42 mm. Conclusions. The highest spatial errors were caused by image fusion and gantry rotation. A comprehensive quality-assurance program was developed for the authors' stereotactic radiosurgery program that includes medical imaging, linear accelerator mechanical isocentricity, and treatment delivery. For a successful treatment of trigeminal neuralgia with a 4-mm cone, the overall RMS value of equal to or less than 1 mm must be guaranteed.


2021 ◽  
Vol 11 (10) ◽  
pp. 4511
Author(s):  
Guglielmo Lomonaco ◽  
Enrico Mainardi ◽  
Tereza Marková ◽  
Guido Mazzini

The topic of Nuclear Safety Culture touches several different aspects with contributions from the main organizations involved in nuclear projects and belonging to vendors, utility and regulators. Two nuclear safety directives issued by the European Commission emphasize the fundamental principle of national responsibility for nuclear safety and are implemented in each member country’s legislation. An example of fission implementation is highlighted, referring to the Czech Republic legislation; an example of application in fusion technology is the implementation of the Nuclear Safety Culture in the ITER project, located in Cadarache, in the south of France. The aim of the paper is to highlight the importance of this field, pointing out the cross reference between fission and fusion technology as applied in two countries, with concrete experiences and future prospects for nuclear technologies.


Sign in / Sign up

Export Citation Format

Share Document