Quality Assurance for a Nuclear Power Plant Simulator by Applying Standards for Safety-Critical Software

Author(s):  
Cheng Ye ◽  
Chao Ni ◽  
Tian Zheng ◽  
Zhicheng Zhang ◽  
Ronghua Zhang

Nuclear power plant simulators are playing a more and more important role in nuclear power plant lifecycle analysis, and the quality of the simulators should be verified to ensure the safety of nuclear power plants. Currently, there is no systematic quality assurance method for nuclear power plant simulators. In this paper, a systematic quality assurance method for nuclear power plant simulators is proposed basing on experiences with safety-critical software. Key aspects of the method are discussed. In addition, application of this method to a real project is also described as a practical reference.

2014 ◽  
Vol 70 ◽  
pp. 128-133 ◽  
Author(s):  
Ye Cheng ◽  
Ni Chao ◽  
Zheng Tian ◽  
Zhang Zhicheng ◽  
Zhang Ronghua

Author(s):  
Hideo Machida ◽  
Norimichi Yamashita ◽  
Shinobu Yoshimura ◽  
Genki Yagawa

This study was performed to clarify the effects of flaw detection probability on piping reliability of a nuclear power plant. Stress-corrosion cracking (SCC) is still sporadically detected in austenitic stainless steel piping in Japanese BWR plants. The suitability for continued service of cracked pipes is basically evaluated by using the “Rules on fitness -for service for nuclear power plants.” Here future inspection rules are employed. However, the possibility of undetection of existing cracks and that of inaccurate measurements cannot be eliminated in UT-based inspection. Thus a probabilistic fracture mechanics (PFM) analysis was carried out referring measured flaw size, and the reliability of piping was evaluated considering the possibility of undetection of existing cracks and that of inaccurate measurements. The results of the analysis indicate that, if the interval and quality of the inspection are maintained at a certain specified level, the possibility of undetection of existing cracks and that of inaccurate measurements less affect failure probability.


2020 ◽  
Vol 178 ◽  
pp. 01008
Author(s):  
Mikle Egorov ◽  
Anastasiya Ukolova ◽  
Ivan Kovalenko ◽  
Irina Krectunova ◽  
Nataliya Lavrovskaya ◽  
...  

It is possible to increase the efficiency of the nuclear power plants equipment in various ways. In particular, one of the most relevant is the active use of computer modeling at different stages of work. The effectiveness the software package used directly affects the quality of the installation equipment. Depending on the stage at which the software package is used, it has various priority properties for the most effective application.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
Vanderley Vasconcelos ◽  
Wellington Antonio Soares ◽  
Raissa Oliveira Marques ◽  
Silvério Ferreira Silva Jr ◽  
Amanda Laureano Raso

Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. This inspection is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI is reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components, such as FMEA (Failure Modes and Effects Analysis) and THERP (Technique for Human Error Rate Prediction). An example by using qualitative and quantitative assessesments with these two techniques to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues, is presented.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1467
Author(s):  
Sangdo Lee ◽  
Jun-Ho Huh ◽  
Yonghoon Kim

The Republic of Korea also suffered direct and indirect damages from the Fukushima nuclear accident in Japan and realized the significance of security due to the cyber-threat to the Republic of Korea Hydro and Nuclear Power Co., Ltd. With such matters in mind, this study sought to suggest a measure for improving security in the nuclear power plant. Based on overseas cyber-attack cases and attacking scenario on the control facility of the nuclear power plant, the study designed and proposed a nuclear power plant control network traffic analysis system that satisfies the security requirements and in-depth defense strategy. To enhance the security of the nuclear power plant, the study collected data such as internet provided to the control facilities, network traffic of intranet, and security equipment events and compared and verified them with machine learning analysis. After measuring the accuracy and time, the study proposed the most suitable analysis algorithm for the power plant in order to realize power plant security that facilitates real-time detection and response in the event of a cyber-attack. In this paper, we learned how to apply data for multiple servers and apply various security information as data in the security application using logs, and match with regard to application of character data such as file names. We improved by applying gender, and we converted to continuous data by resetting based on the risk of non-continuous data, and two optimization algorithms were applied to solve the problem of overfitting. Therefore, we think that there will be a contribution in the connection experiment of the data decision part and the optimization algorithm to learn the security data.


2021 ◽  
Author(s):  
S. W. Glass ◽  
Leonard S. Fifield ◽  
Mychal P. Spencer

Abstract Nuclear power plant cables were originally qualified for 40 year life and generally have not required specific test verification to assure service availability through the initial plant qualification period. However, license renewals to 60 and 80 years of operation require a cable aging management program that depends on some form of test and verification to assure fitness for service. Environmental stress (temperature, radiation, chemicals, water, and mechanical) varies dramatically within a nuclear power plant and, in some cases, cables have degraded and required repair or replacement before their qualified end-of-life period. In other cases, cable conditions have been mild and dependable cable performance confirmed to extend well beyond the initial qualified life. Most offline performance-based testing requires cables to be decoupled and de-energized for specially trained technicians to perform testing. These offline tests constitute an expensive operational burden that limits the economic viability of nuclear power plants. Although initial investment may be higher, new online test practices are emerging as options or complements to offline testing that avoid or minimize the regularly scheduled offline test burden. These online methods include electrical and fiber-optic partial discharge measurement, spread spectrum time or frequency domain reflectometry, distributed temperature profile measurements, and local interdigital capacitance measurement of insulation characteristics. Introduction of these methods must be supported by research to confirm efficacy plus either publicly financed or market driven investment to support the start-up expense of cost-effective instrumentation to monitor cable condition and assure reliable operation. This work summarizes various online cable assessment technologies plus introduces a new cable motor test bed to assess some of these technologies in a controlled test environment.


Kerntechnik ◽  
2021 ◽  
Vol 86 (5) ◽  
pp. 343-352
Author(s):  
J. Cui ◽  
Y. Cai ◽  
Y. Wu

Abstract Software criticality analysis examines the degree of contribution that each individual failure mode of a software component has on the reliability of software. Higher safety integrity levels are assigned to software modules whose failures cause an unacceptable impact on the operation of the system, and these levels require the implementation of more rigorous software quality assurance measures as defined in IEEE Std 1012 and in the customer’s system requirements specification. In this paper, a novel software criticality analysis method is proposed, the results of which can be used to guide the development of newly developed software and the procurement of Commercial-Off-The-Shelf (COTS) software. The software structure is first analyzed and the software is divided into modules according to their functions. Then the criticality levels of software components are preliminarily classified by means of a safety criticality preliminary analysis tree, followed by their verification through the software hazard and operability analysis (HAZOP). Finally, the target Safety Integrity Level (SIL) of each software module is determined based on its criticality level and the overall safety objective (i. e., SIL) of the system it resides in. As an example, this proposed method is applied to a nuclear power plant safety-critical system to demonstrate the detail application process and to verify the feasibility of the method. Compared with the existing software criticality analysis methods, this method has better operability and verifiability, and can be utilized as a technical guidance for the software criticality analysis of nuclear power plant digital control systems.


2021 ◽  
Author(s):  
Li Liang ◽  
Pan Rong ◽  
Ren Guopeng ◽  
Zhu Xiuyun

Abstract Almost all nuclear power plants in the world are equipped with seismic instrument system, especially the third generation nuclear power plants in China. When the ground motion measured by four time history accelerometers of containment foundation exceeds the preset threshold, the automatic shutdown trigger signal will be generated. However, from the seismic acceleration characteristics, isolated and prominent single high frequency will be generated the acceleration peak, which has no decisive effect on the seismic response, may cause false alarm, which has a certain impact on the smooth operation of nuclear power plant. According to the principle of three elements of ground motion, this paper puts forward a method that first selects the filtering frequency band which accords with the structural characteristics of nuclear power plants, then synthesizes the three axial acceleration time history, and finally selects the appropriate acceleration peak value for threshold alarm. The results show that the seismic acceleration results obtained by this method can well represent the actual magnitude of acceleration, and can solve the problem of false alarm due to the randomness of single seismic wave, and can be used for automatic reactor shutdown trigger signal of seismic acceleration.


Sign in / Sign up

Export Citation Format

Share Document