Nanofluid Boiling Heat Transfer and Critical Heat Flux Enhancement: Mechanism to Be Revealed

Author(s):  
Junmei Wu ◽  
Jiyun Zhao ◽  
Yun Wang

As a novel strategy to improve heat transfer characteristics of fluids by the addition of solid particles with diameters below 100 nm, nanofluids exhibits unprecedented heat transfer properties and are being considered as potential working fluids to be used in high heat flux systems such as nuclear reactors, electronic cooling systems and solar collectors. The present paper reviews the state-of-the-art studies on nanofluid boiling heat transfer performance and critical heat flux (CHF) enhancement. It is found that some results on nanofluids boiling heat transfer performance are inconsistent or contradictory in data published. The knowledge on the mechanism of nanofluids boiling CHF enhancement is insufficient. Bubble dynamics of nanofluids boiling is suggested to be investigated to identify the exact contributions of solid surface modifications and suspended nanoparticles to CHF enhancement in nanofluids boiling heat transfer.

2013 ◽  
Vol 589-590 ◽  
pp. 559-564
Author(s):  
Xi Bing Li ◽  
Yun Shi Ma ◽  
Xun Wang ◽  
Ming Li

As a highly efficient heat transfer component, a micro heat pipe (MHP) has been widely applied to the situations with high heat flux concentration. However, a MHPs heat transfer performance is affected by many factors, among which, working fluid inventory has great influence on the security, reliability and frost resistance of its heat transfer performance. In order to determine the appropriate working fluid inventory for grooved MHPs, this paper first analyzed the working principle, major heat transfer limits and heat flux distribution law of grooved MHPs in electronic chips with high heat flux concentration, then established a mathematic model for the working fluid inventory in grooved MHPs. Finally, with distilled water being the working fluid, a series of experimental investigations were conducted at different temperatures to test the heat transfer performances of grooved MHPs, which were perfused with different inventories and with different adiabatic section lengths. The experimental results show that when the value of α is roughly within 0.40±0.05, a grooved MHP can acquire its best heat transfer performance, and the working fluid inventory can be determined by the proposed mathematic model. Therefore this study solves the complicated problem of determining appropriate working fluid inventory for grooved MHPs.


2001 ◽  
Vol 124 (2) ◽  
pp. 383-390 ◽  
Author(s):  
H. Honda ◽  
H. Takamastu ◽  
J. J. Wei

Experiments were conducted to study the effects of micro-pin-fins and submicron-scale roughness on the boiling heat transfer from a silicon chip immersed in a pool of degassed and gas-dissolved FC-72. Square pin-fins with fin dimensions of 50×50×60μm3 (width×thickness×height) and submicron-scale roughness (RMS roughness of 25 to 32 nm) were fabricated on the surface of square silicon chip 10×10×0.5mm3 by use of microelectronic fabrication techniques. Experiments were conducted at the liquid subcoolings of 0, 3, 25, and 45 K. Both the micro-pin-finned chip and the chip with submicron-scale roughness showed a considerable heat transfer enhancement as compared to a smooth chip in the nucleate boiling region. The chip with submicron-scale roughness showed a higher heat transfer performance than the micro-pin-finned chip in the low-heat-flux region. The micro-pin-finned chip showed a steep increase in the heat flux with increasing wall superheat. This chip showed a higher heat transfer performance than the chip with submicron-scale roughness in the high-heat-flux region. The micro-pin-finned chip with submicron-scale roughness on it showed the highest heat transfer performance in the high-heat-flux region. While the wall superheat at boiling incipience was strongly dependent on the dissolved gas content, it was little affected by the liquid subcooling.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Satish G. Kandlikar ◽  
Theodore Widger ◽  
Ankit Kalani ◽  
Valentina Mejia

Flow boiling in microchannels has been extensively studied in the past decade. Instabilities, low critical heat flux (CHF) values, and low heat transfer coefficients have been identified as the major shortcomings preventing its implementation in practical high heat flux removal systems. A novel open microchannel design with uniform and tapered manifolds (OMM) is presented to provide stable and highly enhanced heat transfer performance. The effects of the gap height and flow rate on the heat transfer performance have been experimentally studied with water. The critical heat fluxes (CHFs) and heat transfer coefficients obtained with the OMM are significantly higher than the values reported by previous researchers for flow boiling with water in microchannels. A record heat flux of 506 W/cm2 with a wall superheat of 26.2 °C was obtained for a gap size of 0.127 mm. The CHF was not reached due to heater power limitation in the current design. A maximum effective heat transfer coefficient of 290,000 W/m2 °C was obtained at an intermediate heat flux of 319 W/cm2 with a gap of 0.254 mm at 225 mL/min. The flow boiling heat transfer was found to be insensitive to flow rates between 40–333 mL/min and gap sizes between 0.127–1.016 mm, indicating the dominance of nucleate boiling. The OMM geometry is promising to provide exceptional performance that is particularly attractive in meeting the challenges of high heat flux removal in electronics cooling applications.


2016 ◽  
Vol 2016 (0) ◽  
pp. I111
Author(s):  
Kio Takai ◽  
Kazuhisa Yuki ◽  
Yoshiki Indou ◽  
Risako Kibushi ◽  
Noriyuki Unno ◽  
...  

Author(s):  
Kazuhisa Yuki ◽  
Akira Matsui ◽  
Hidetoshi Hashizume ◽  
Koichi Suzuki

Heat transfer characteristics of micro-sized bronze particle-sintered porous heat sinks and copper minichannel-fins heat sinks are experimentally investigated in order to clarify the feasibility of a newly proposed micro/mini cooling device using fins-installed porous media. Regarding the porous heat sinks, fin effect toward more inside of the porous medium is promoted by sintering the porous heat sink on the heat transfer surface, which results in increasing the heat transfer performance up to 0.8MW/m2K at heat flux of 8.2MW/m2 though there still remains a large pressure loss issue. In addition, the results clarify that the heat exchanging area exists only in the vicinity of the heat transfer surface. As to the minichannel-fins heat sinks, the influence of the channel width and the fin thickness are evaluated in detail. As a result, the minichannel-fins heat sink having the narrower channel width (i.e. scale effect) and lower porosity (i.e. thicker fin thickness with larger heat capacity) achieves higher heat transfer performance up to 0.10MW/m2K at 8.3MW/m2. However, rapid increase of pressure loss, which is occasionally observed in a microchannel due to vapor bubbles choking the narrow channel, still remains as an issue under flow boiling conditions in the minichannel. Finally, heat transfer performance of the fin-installed porous heat sink is numerically predicted by the control volume method. The simulation confirms that the heat transfer coefficient at each wall superheat of 0 and 30 degrees has performance 2.5 times and 2.0 times higher than that of the normal fins, which indicates that this heat sink coupling the micro and mini channels has high potential as efficient cooling method under high heat flux conditions exceeding 10MW/m2.


Author(s):  
Yasuo Koizumi ◽  
Yoshiki Morita

Pool boiling heat transfer experiments were performed for small heat transfer surfaces at 0.101 MPa by using ethanol as test fluid. The test heat transfer surfaces were made of copper. The diameters of the heat transfer surfaces were 1.0, 2.0, 3.0, 5.0, 7.0 10.0 and 20.0 mm. When the heat flux was low, small isolated bubbles left from the heat transfer surface irrespective of size of the heat transfer surface. As the heat flux was increased, coalescent large bubbles were formed on the heat transfer surface in the case that the surface diameter was larger than 5.0 mm. Large bubbles left from place to place of the coalescent large bubbles on the heat transfer surface. In the case that the surface diameter was smaller than 3.0 mm, a single bubble stayed on the heat transfer surface and a single bubble periodically left form the bubble when the heat flux was increased to the middle and high heat flux region. As the diameter of the boiling surface became smaller, the boiling heat transfer was enhanced and the critical heat flux increased. The dependency of the critical heat flux on the heat transfer surface size was well correlated with the Ded and Lienhard relation developed for spheres.


Author(s):  
Zeyu Liu ◽  
Runkeng Liu ◽  
Peng Li ◽  
Anyi Xu ◽  
Zhenyu Liu

Abstract Wettability has been proved as an important issue to the thermal transport at solid-liquid interface at different scales, however, its enhancement mechanism has not been clearly understood till now. In this study, the nucleate boiling behavior of argon fluid on heterogeneous wetting surfaces were examined with the non-equilibrium molecular dynamics (MD) method, the ring-patterned and stripe-patterned schemes were designed and analyzed, respectively. By comparing the boiling inception time and evaporation rate of liquid argon atoms, it is found that the ring-patterned surface shows an advantage in the nucleate boiling heat transfer compared with the stripe-patterned one. The differences in heat transfer characteristics for different surfaces can be explained through the qualitative analysis of fluid density distribution and solid-fluid interaction energy. Furthermore, the boiling phenomena on ring-patterned surfaces with alternated hydrophilic and hydrophobic intervals were simulated to study the influence of area fraction of hydrophilic region on the heat transfer performance. It is observed that bubble nucleus firstly appears over the hydrophobic region of the substrate. The substrate with more hydrophilic area will have a better heat transfer performance. It is also demonstrated that there is an optimal area fraction, which can make the evaporation rate of fluid reach the highest value. The findings in this work can contribute to the design and fabrication of nanocoating surface to enhance its heat transfer performance under high heat flux condition.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Dwight Cooke ◽  
Satish G. Kandlikar

Pool boiling is of interest in high heat flux applications because of its potential for removing large amount of heat resulting from the latent heat of evaporation and little pressure drop penalty for circulating coolant through the system. However, the heat transfer performance of pool boiling systems is not adequate to match the cooling ability provided by enhanced microchannels operating under single-phase conditions. The objective of this work is to evaluate the pool boiling performance of structured surface features etched on a silicon chip. The performance is normalized with respect to a plain chip. This investigation also focuses on the bubble dynamics on plain and structured microchannel surfaces under various heat fluxes in an effort to understand the underlying heat transfer mechanism. It was determined that surface modifications to silicon chips can improve the heat transfer coefficient by a factor up to 3.4 times the performance of a plain chip. Surfaces with microchannels have shown to be efficient for boiling heat transfer by allowing liquid to flow through the open channels and wet the heat transfer surface while vapor is generated. This work is expected to lead to improved enhancement features for extending the pool boiling option to meet the high heat flux removal demands in electronic cooling applications.


Sign in / Sign up

Export Citation Format

Share Document