Computational Fluid Dynamics Modeling of Two-Phase Boiling Flow and Critical Heat Flux

Author(s):  
Adrian Tentner ◽  
Elia Merzari ◽  
Prasad Vegendla

This paper presents recent advances in the modeling of two-phase boiling flow and critical heat flux that have been implemented in the Extended Boiling Framework (EBF) [1, 2, 3]. The EBF code was developed as a customized module built on the foundation of the commercial Computational Fluid Dynamics (CFD) code STAR-CD, which provides general two-phase flow modeling capabilities, for the detailed analysis of the two-phase flow and heat transfer phenomena that occur in Boiling Water Reactor (BWR) fuel assemblies. These phenomena include coolant phase changes and multiple flow regimes that directly influence the coolant interaction with the fuel pins and, ultimately, the reactor performance. An effort to expand the EBF two-phase models and to explore their applicability to other CFD codes is currently underway. The paper presents results of recent CFD analyses of Critical Heat Flux (CHF) experiments that have measured the axial distribution of wall temperature in two-phase upward flow in a vertical channel with a heated wall. The experiments were designed to produce the onset of CHF in the upper half of the heated channel. The simulated axial distribution of wall temperature is compared with experimental data, illustrating the ability of the extended EBF model to capture the onset of CHF for a wide range of thermal-hydraulic conditions relevant for BWRs. The paper concludes with a discussion of results and plans for future work.

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Daniel Lorenzini ◽  
Yogendra K. Joshi

The computational fluid dynamics (CFD) modeling of boiling phenomena has remained a challenge due to numerical limitations for accurately simulating the two-phase flow and phase-change processes. In the present investigation, a CFD approach for such analysis is described using a three-dimensional (3D) volume of fluid (VOF) model coupled with a phase-change model accounting for the interfacial mass and energy transfer. This type of modeling allows the transient analysis of flow boiling mechanisms, while providing the ability to visualize in detail temperature, phase, and pressure distributions for microscale applications with affordable computational resources. Results for a plain microchannel are validated against benchmark correlations for heat transfer (HT) coefficients and pressure drop as a function of the heat flux and mass flux. Furthermore, the model is used for the assessment of two-phase cooling in microelectronics under a realistic scenario with nonuniform heat fluxes at localized regions of a silicon microchannel, relevant to the cooling layer of 3D integrated circuit (IC) architectures. Results indicate the strong effect of two-phase flow regime evolution and vapor accumulation on HT. The effects of reduced saturation pressure, subcooling, and flow arrangement are explored in order to provide insight about the underlying physics and cooling performance.


Author(s):  
Douglas B. Heymann ◽  
Deborah V. Pence

The performance of two-phase flow through fractal-like heat sinks, subject to both geometrical and flow constraints was assessed. Constraints are crucial in order to satisfy physical requirements of a design. A one-dimensional model of two-phase flow through fractal-like branching microchannels was used to estimate pressure drop, wall temperature and critical heat flux. Water is employed as the working fluid. The exit pressure is varied between 6 kPa and 101.3 kPa (absolute) in order to achieve two-phase flow at temperatures lower than the maximum wall temperature constraint of 70°C. Preliminary results show that the benefit to cost ratio of two-phase flow is on the same order of magnitude as single-phase flow, both with a 70°C wall temperature constraint. Alternatively, a critical heat flux model is used to constrain the flow rate in order for the imposed heat flux to be 50% of the critical heat flux.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2399 ◽  
Author(s):  
Fengbo Yang ◽  
Xinyu Xue ◽  
Chen Cai ◽  
Zhu Sun ◽  
Qingqing Zhou

In recent years, multirotor unmanned aerial vehicles (UAVs) have become more and more important in the field of plant protection in China. Multirotor unmanned plant protection UAVs have been widely used in vast plains, hills, mountains, and other regions, and become an integral part of China’s agricultural mechanization and modernization. The easy takeoff and landing performances of UAVs are urgently required for timely and effective spraying, especially in dispersed plots and hilly mountains. However, the unclearness of wind field distribution leads to more serious droplet drift problems. The drift and distribution of droplets, which depend on airflow distribution characteristics of UAVs and the droplet size of the nozzle, are directly related to the control effect of pesticide and crop growth in different growth periods. This paper proposes an approach to research the influence of the downwash and windward airflow on the motion distribution of droplet group for the SLK-5 six-rotor plant protection UAV. At first, based on the Navier-Stokes (N-S) equation and SST k–ε turbulence model, the three-dimensional wind field numerical model is established for a six-rotor plant protection UAV under 3 kg load condition. Droplet discrete phase is added to N-S equation, the momentum and energy equations are also corrected for continuous phase to establish a two-phase flow model, and a three-dimensional two-phase flow model is finally established for the six-rotor plant protection UAV. By comparing with the experiment, this paper verifies the feasibility and accuracy of a computational fluid dynamics (CFD) method in the calculation of wind field and spraying two-phase flow field. Analyses are carried out through the combination of computational fluid dynamics and radial basis neural network, and this paper, finally, discusses the influence of windward airflow and droplet size on the movement of droplet groups.


2013 ◽  
Vol 68 (12) ◽  
pp. 2534-2544 ◽  
Author(s):  
N. Ratkovich ◽  
T. R. Bentzen

Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement, which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be greatly improved with a two-phase flow (sludge–air) or higher liquid cross-flow velocities. However, the optimization process of these systems is complex and requires knowledge of the membrane fouling, hydrodynamics and biokinetics. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the two-phase flow in an MBR. Four cases of different MBR configurations are presented in this work, using CFD as a tool to develop and optimize these systems.


Author(s):  
Ruwan K. Ratnayake ◽  
L. E. Hochreiter ◽  
K. N. Ivanov ◽  
J. M. Cimbala

Performance of best estimate codes used in the nuclear industry can be significantly improved by reducing the empiricism embedded in their constitutive models. Spacer grids have been found to have an important impact on the maximum allowable Critical Heat Flux within the fuel assembly of a nuclear reactor core. Therefore, incorporation of suitable spacer grids models can improve the critical heat flux prediction capability of best estimate codes. Realistic modeling of entrainment behavior of spacer grids requires understanding the different mechanisms that are involved. Since visual information pertaining to the entrainment behavior of spacer grids cannot possibly be obtained from operating nuclear reactors, experiments have to be designed and conducted for this specific purpose. Most of the spacer grid experiments available in literature have been designed in view of obtaining quantitative data for the purpose of developing or modifying empirical formulations for heat transfer, critical heat flux or pressure drop. Very few experiments have been designed to provide fundamental information which can be used to understand spacer grid effects and phenomena involved in two phase flow. Air-water experiments were conducted to obtain visual information on the two-phase flow behavior both upstream and downstream of Boiling Water Reactor (BWR) spacer grids. The test section was designed and constructed using prototypic dimensions such as the channel cross-section, rod diameter and other spacer grid configurations of a typical BWR fuel assembly. The test section models the flow behavior in two adjacent sub channels in the BWR core. A portion of a prototypic BWR spacer grid accounting for two adjacent channels was used with industrial mild steel rods for the purpose of representing the channel internals. Symmetry was preserved in this practice, so that the channel walls could effectively be considered as the channel boundaries. Thin films were established on the rod surfaces by injecting water through a set of perforations at the bottom ends of the rods, ensuring that the flow upstream of the bottom-most spacer grid is predominantly annular. The flow conditions were regulated such that they represent typical BWR operating conditions. Photographs taken during experiments show that the film entrainment increases significantly at the spacer grids, since the points of contact between the rods and the grids result in a peeling off of large portions of the liquid film from the rod surfaces. Decreasing the water flow resulted in eventual drying out, beginning at positions immediately upstream of the spacer grids.


Sign in / Sign up

Export Citation Format

Share Document