Numerical Study of Void Fraction and Critical Heat Flux in Subcooled Two Phase Flow Boiling in Boiler Tube

Author(s):  
Vimal Sain ◽  
Sandip Kumar Saha
Author(s):  
Tie Jun Zhang ◽  
Siyu Chen ◽  
Evelyn N. Wang

Two-phase microchannel cooling promises high heat flux removal for high-performance electronics and photonics. However, the heat transfer performance of flow boiling microchannels is limited by the critical heat flux (CHF) conditions. For variable heat inputs and variable fluid flows, it is essential to predict CHFs accurately for effective and efficient two-phase microchannel cooling. To characterize the CHF and pressure drop in flow boiling microchannels, a separated-flow model is proposed in this paper based on fundamental two-phase flow mass, energy, momentum conservation and wall energy conservation laws. With this theoretical framework, the relationship among liquid/vapor interfacial instability, two-phase flow characteristics and CHF is further studied. This mechanistic model also provides insight into the design and operational guidelines for advanced electronics and photonics cooling technologies.


2021 ◽  
Vol 5 (4) ◽  
pp. 31
Author(s):  
Seth Eckels ◽  
Zayed Ahmed ◽  
Molly Ross ◽  
Daniel Franken ◽  
Steven Eckels ◽  
...  

Recent studies have shown that the presence of dissolved salts in water can exhibit peculiar flow boiling and two-phase flow regimes. Two-phase flow and convective flow boiling are typically characterized with the help of void fraction measurements. To quantitatively improve our understanding of two-phase flow and boiling phenomenon with seawater coolant, void fraction data are needed, which can not be obtained from optical imaging. In this paper, we present experimental void fraction measurements of saturated flow boiling of tap water and seawater using X-ray radiography. X-rays with a maximum energy level of 40 KeV were used for imaging the exit region of the heated test section. At lower heat flux levels, the two phase flow in seawater was bubbly and homogeneous in nature, resulting in higher void fractions as compared to tap water. With an increase in heat flux, the flow regime was similar to slug flow, and void fraction measurements approached similarity with tap water. The predicted pressure drop using the measured void faction shows good agreement with the measured total pressure drop across the test section, demonstrating the validity of the measurement process.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Agus Sunjarianto Pamitran ◽  
Sentot Novianto ◽  
Normah Mohd-Ghazali ◽  
Nasruddin Nasruddin ◽  
Raldi Koestoer

Two-phase flow boiling pressure drop experiment was conducted to observe its characteristics and to develop a new correlation of void fraction based on the separated model. Investigation is completed on the natural refrigerant R-290 (propane) in a horizontal circular tube with a 7.6 mm inner diameter under experimental conditions of 3.7 to 9.6 °C saturation temperature, 10 to 25 kW/m2 heat flux, and 185 to 445 kg/m2s mass flux. The present experimental data was used to obtain the calculated void fraction which then was compared to the predicted void fraction with 31 existing correlations. A new void fraction correlation for predicting two-phase flow boiling pressure drop, as a function of Reynolds numbers, was proposed. The measured pressure drop was compared to the predicted pressure drop with some existing pressure drop models that use the newly developed void fraction model. The homogeneous model of void fraction showed the best prediction with 2% deviation


Author(s):  
Ruwan K. Ratnayake ◽  
L. E. Hochreiter ◽  
K. N. Ivanov ◽  
J. M. Cimbala

Performance of best estimate codes used in the nuclear industry can be significantly improved by reducing the empiricism embedded in their constitutive models. Spacer grids have been found to have an important impact on the maximum allowable Critical Heat Flux within the fuel assembly of a nuclear reactor core. Therefore, incorporation of suitable spacer grids models can improve the critical heat flux prediction capability of best estimate codes. Realistic modeling of entrainment behavior of spacer grids requires understanding the different mechanisms that are involved. Since visual information pertaining to the entrainment behavior of spacer grids cannot possibly be obtained from operating nuclear reactors, experiments have to be designed and conducted for this specific purpose. Most of the spacer grid experiments available in literature have been designed in view of obtaining quantitative data for the purpose of developing or modifying empirical formulations for heat transfer, critical heat flux or pressure drop. Very few experiments have been designed to provide fundamental information which can be used to understand spacer grid effects and phenomena involved in two phase flow. Air-water experiments were conducted to obtain visual information on the two-phase flow behavior both upstream and downstream of Boiling Water Reactor (BWR) spacer grids. The test section was designed and constructed using prototypic dimensions such as the channel cross-section, rod diameter and other spacer grid configurations of a typical BWR fuel assembly. The test section models the flow behavior in two adjacent sub channels in the BWR core. A portion of a prototypic BWR spacer grid accounting for two adjacent channels was used with industrial mild steel rods for the purpose of representing the channel internals. Symmetry was preserved in this practice, so that the channel walls could effectively be considered as the channel boundaries. Thin films were established on the rod surfaces by injecting water through a set of perforations at the bottom ends of the rods, ensuring that the flow upstream of the bottom-most spacer grid is predominantly annular. The flow conditions were regulated such that they represent typical BWR operating conditions. Photographs taken during experiments show that the film entrainment increases significantly at the spacer grids, since the points of contact between the rods and the grids result in a peeling off of large portions of the liquid film from the rod surfaces. Decreasing the water flow resulted in eventual drying out, beginning at positions immediately upstream of the spacer grids.


Author(s):  
H. Y. Wu ◽  
Ping Cheng

A simultaneous visualization and measurement study has been carried out to investigate flow boiling of water in the 8 parallel silicon microchannels heated from below. It is found that there are two large-amplitude/long-period oscillating boiling modes exist in microchannels depending on the amounts of heat flux and mass flux. When the outlet water temperature is at saturation temperature and the wall temperatures are superheated, while the inlet water temperature is still subcooled, a Liquid/Two-phase Alternating Flow (LTAF) mode appears in the microchannels. This LTAF mode disappears when the inlet temperatures reaches the saturation temperature. As the heat flux is further increased such that the outlet water is superheated while the inlet water temperature is oscillating between subcooled and saturation temperature, a Liquid/Two-phase/Vapor Alternating Flow (LTVAF) mode begins. During these two unstable boiling modes, there are large-amplitude and long-period oscillations of water and wall temperatures with respect to time. Bubbly flow as well as some peculiar two-phase flow pattern are observed during the two-phase flow periods of the two unstable modes in the microchannels.


Sign in / Sign up

Export Citation Format

Share Document