Influence of Driven Rods on Performance of Grounding Grids in Stratified Soils

Author(s):  
S. A. El-Drieny ◽  
I. A. Metwally ◽  
M. M. El-Saadawi

The variation in soil structure has a great influence on the grounding grid performance. This influence can be measured in terms of ground resistance, touch and step potentials. This paper presents a comprehensive experimental study for the influence of adding driven rods on the performance of grounding grids. The study is applied on three constructed scale models. The models have been performed to simulate a single-, double- and triple-layer soils. A comparison between results obtained experimentally and that computed by mathematical equations is introduced.

2017 ◽  
Vol 2 (2) ◽  
pp. 11
Author(s):  
Carlos L. B. Silva ◽  
Thyago G. Pires ◽  
Wesley P. Calixto ◽  
Diogo N. Oliveira ◽  
Luis A. P. Souza ◽  
...  

This paper deals with the computation of ground resistance, surface voltage, touch voltage and step voltage, to mesh with horizontal wires arranged in different angles. The computer program implemented used in the mathematical modeling is based on the method proposed by Heppe, which allows obtaining the grounding parameters for homogeneous soil and soil stratified in two layers. The results obtained with the proposed method will be compared with other methods in literature. Also will be presented the results of a grounding grid using wires at various angles.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256298
Author(s):  
Navinesshani Permal ◽  
Miszaina Osman ◽  
Azrul Mohd Ariffin ◽  
Navaamsini Boopalan ◽  
Mohd Zainal Abidin Ab Kadir

Grounding systems are critical in safeguarding people and equipment from power system failures. A grounding system’s principal goal is to offer the lowest impedance path for undesired fault current. Optimization of the grounding grid designs is important in satisfying the minimum cost of the grounding system and safeguarding those people who work in the surrounding area of the grounded installations. Currently, there is no systematic guidance or standard for grounding grid designs that include two-layer soil and its effects on grounding grid systems, particularly vertically layered soil. Furthermore, while numerous studies have been conducted on optimization, relatively limited study has been done on the problem of optimizing the grounding grid in two-layer soil, particularly in vertical soil structures. This paper presents the results of optimization for substation grounding systems using the Simulated Annealing (SA) algorithm in different soil conditions which conforms to the safety requirements of the grounding system. Practical features of grounding grids in various soil conditions discussed in this paper (uniform soil, two-layer horizontal soil, and two-layer vertical soil) are considered during problem formulation and solution algorithm. The proposed algorithm’s results show that the number of grid conductors in the X and Y directions (Nx and Ny), as well as vertical rods (Nr), can be optimized from initial numbers of 35% for uniform soil, 57% for horizontal two-layer soil for ρ1> ρ2, and 33% for horizontal two-layer soil for ρ1< ρ2, and 29% for vertical two-layer soil structure. In other words, the proposed technique would be able to utilize square and rectangle-shaped grounding grids with a number of grid conductors and vertical rods to be implemented in uniform, two-layer horizontal and vertical soil structure, depending on the resistivity of the soil layer.


2021 ◽  
Vol 11 (16) ◽  
pp. 7468
Author(s):  
Navinesshani Permal ◽  
Miszaina Osman ◽  
Azrul Mohd Ariffin ◽  
Mohd Zainal Abidin Ab Kadir

Designing an effective grounding system for AC substations needs predetermination of ground resistance and ground potential distribution caused by fault current’s presence in the ground. Therefore, it is necessary to have a suitable grounding grid structure in the soil properties in which the grid is buried. Though the soil composition where the grounding grid is located is typically non-homogeneous, the soil is often presumed to be homogeneous due to the complexities of grounding system analysis in non-homogeneous soil. This assumption will lead to inaccuracies in the computation of ground resistance and ground potentials. Although extensive research has been done on non-homogeneous soil structure, comprehensive literature on grounding system performance in non-homogeneous soil is yet to be reviewed. Thus, this paper reviews the effect of non-homogeneous soil on the grounding system, with different soil characteristics in horizontal and vertical two-layer soil structure and the horizontal three-layer soil structure. In addition, the effect of design parameters on the grounding performance in non-homogeneous soil conditions for non-transient fault conditions is also studied. The significance of this study is that it provides a comprehensive review of grounding performance as grounding design changes and their effects as soil layers and their corresponding features change. This knowledge will be useful in developing safe grounding designs in non-homogeneous soil.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Shengbao Yu ◽  
Guanliang Dong ◽  
Nannan Liu ◽  
Xiyang Liu ◽  
Chang Xu ◽  
...  

The wire loop method of the transient electromagnetic (TEM) method is used to nondestructively detect conductor breaks of grounding grid. For this purpose, grounding grids serve as an underground wire loop, and the measuring points are arranged on the ground. At each measuring point, a receiving loop is employed to detect the electromagnetic response generated by transmitting the current of the transmitting loop. Conductor breaks can be diagnosed by analyzing the slices of the electromagnetic response. We study the effect of loop size and height difference through the simulation of an intact 2×2 grounding grid, confirming that it is easier to obtain the topological structure using a small transmitting loop and a small height difference. Furthermore, simulations of an intact 4×4 grounding grid and grids with different locations of conductor breaks are also conducted with a small transmitting loop. It is easy to distinguish the topological structure of the grounding grid and the locations of conductor breaks. Finally, the detection method is applied experimentally. The experimental results confirm that the proposed method is an effective technique for conductor break diagnosis.


2020 ◽  
Vol 11 (4) ◽  
pp. 448-467
Author(s):  
Petr Prochazka ◽  
Dagmar Jandeková

The experimental study, the results of which are presented in this article, focuses on the shock wave behavior in scale models of tunnel structures and their consequences on the damage of tubes simulating tunnel lining. The source of the explosion is located either on the longitudinal axis of the tunnel or it is located near the bottom of the tunnel. The second case is more akin to reality. This article analyzes the consequences of the location of explosion sources and the influence of their brisance. In order to compare the effects of explosions on the tunnel lining, the effect of the charge deposited on the axis of the tunnel is investigated on a 0.5-m-diameter tube, while the effect of the charge deposited outside the tunnel axis is monitored on a 1-m-diameter tube. Thus, the magnitudes of the brisance may be comparable for both cases. The characteristics of the shock waves are described. The mass of the charges is graded so as not to allow a total collapse of the structure, but to manifest its damage.


Sign in / Sign up

Export Citation Format

Share Document