Effects of Variation of the Overall Heat Transfer Coefficient in the Feedwater Heaters on the Thermodynamic and Economic Performance of Power Stations

2000 ◽  
Author(s):  
Józef Portacha ◽  
Idris A. Elfeituri ◽  
Adam Smyk ◽  
Jerzy K. Fiszdon

Abstract This paper examines the effect of the variation of the overall heat transfer coefficient (U) in feedwater heaters on the thermodynamic and economic performance of a coal-fired steam power plant. The changes in the values of U are caused by the heat transfer surface fouling or by errors in the power plant design. These errors often result from the use of approximate heat transfer equations when selecting power plants elements. Low and high pressure feedwater heaters of a power plant equipped with a condensing turbine and a natural circulation steam generator with one reheat stage are considered in this work. The research was conducted using the overall heat transfer coefficients from 50% to 150% of the nominal value. The thermodynamic and economic effects on the power plant were calculated using the mathematical model of the power plant. The power plant components’ mathematical models evaluate the influence of the changes in the heaters’ overall heat transfer coefficient on the thermodynamic (especially exergetic) losses and economic effects. They take into account off-design operating conditions. The decomposition method and multi-level iterative process was used to solve the problem. The research proved that, during operation, the capacity of the power plant might change by up to 2% due to above-mentioned variations. For a 600 MW power plant that means variation of the electric power delivery of approximately 12 MW and increase of the operating costs of up to 4 million dollars per year. The obtained results are particularly useful in the decision-making process in planning renovation and feedwater heaters’ replacement periods.

2019 ◽  
Vol 70 (6) ◽  
pp. 2040-2043
Author(s):  
Sinziana Radulescu ◽  
Loredana Irena Negoita ◽  
Ion Onutu

A relation for calculation of the effective overall heat transfer coefficient in a triple concentric-tube heat exchanger is proposed. The relation of the effective overall heat transfer coefficient is obtained based on total thermal resistance and it is applied within a case study for thermal analysis of two triple concentric-tube heat exchangers with different geometries, hot fluids and operating conditions. Through case study it is found that the values of effective overall heat transfer coefficient can be obtained with acceptable errors, up to 3 % for both heat exchangers.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Eph Sparrow ◽  
John Gorman ◽  
John Abraham

This investigation was performed in order to quantify the validity of the assumed constancy of the overall heat transfer coefficient U in heat exchanger design. The prototypical two-fluid heat exchanger, the double-pipe configuration, was selected for study. Heat transfer rates based on the U = constant model were compared with those from highly accurate numerical simulations for 60 different operating conditions. These conditions included: (a) parallel and counter flow, (b) turbulent flow in both the pipe and the annulus, (c) turbulent flow in the pipe and laminar flow in the annulus and the vice versa situation, (d) laminar flow in both the pipe and the annulus, and (e) different heat exchanger lengths. For increased generality, these categories were further broken down into matched and unmatched Reynolds numbers in the individual flow passages. The numerical simulations eschewed the unrealistic uniform-inlet-velocity-profile model by focusing on pressure-driven flows. The largest errors attributable to the U = constant model were encountered for laminar flow in both the pipe and the annulus and for laminar flow in one of these passages and turbulent flow in the other passage. This finding is relevant to microchannel flows and other low-speed flow scenarios. Errors as large as 50% occurred. The least impacted were cases in which the flow is turbulent in both the pipe and the annulus. The general level of the errors due to the U = constant model were on the order of 10% and less for those cases. This outcome is of great practical importance because heat-exchanger flows are more commonly turbulent than laminar. Another significant outcome of this investigation is the quantification of the axial variations of the temperature and heat flux along the wall separating the pipe and annulus flows. It is noteworthy that these distributions do not fit either the uniform wall temperature or uniform heat flux models.


2020 ◽  
Vol 324 ◽  
pp. 02005
Author(s):  
Boris T. Marinyuk ◽  
Sergei V. Belukov ◽  
Igor A. Korolev

A mathematical model was developed to predict the performance characteristics of fin-and-tube air coolers with plane fins, taking into account the temperature and humidity conditions, non-uniform thickness of the frost layer along the heat exchanger core, flow-pressure characteristics of the fans and the refrigerant superheat zone. The model was verified on the experimental data of air cooler performance in frosting conditions obtained by the authors in air temperature range from minus 6 to minus 20 ° C, and experimental data from independent researchers. The presented model predicts the cooling capacity and the overall heat transfer coefficient in the evaporator with error not exceeded 15%. It was found that during dry operating conditions of the air cooler, the refrigerant boiling temperature descent by 10 °C leads to a decrease in the overall heat transfer coefficient by 35%. The main reason of that is double decrease of the refrigerant mass velocity and the refrigerant-side heat transfer coefficient by 75%. The process of frost grow leads to an increase in overall thermal resistance in the studied air cooler by 30%, more than double increase in the aerodynamic resistance and decrease in cooling capacity by 15%.


2019 ◽  
Vol 111 ◽  
pp. 01001
Author(s):  
Hansol Lim ◽  
Hye-Jin Cho ◽  
Seong-Yong Cheon ◽  
Soo-Jin Lee ◽  
Jae-Weon Jeong

A phase change material based radiant cooling panel with thermoelectric module (PCM-TERCP) is proposed in this study. It consists of two aluminium panels, and phase change materials (PCMs) sandwiched between the two panels. Thermoelectric modules (TEMs) are attached to one of the aluminium panels, and heat sinks are attached to the top side of TEMs. PCM-TERCP is a thermal energy storage concept equipment, in which TEMs freeze the PCM during the night whose melting temperature is 16○C. Therefore, the radiant cooling panel can maintain a surface temperature of 16◦C without the operation of TEM during the day. Furthermore, it is necessary to design the PCM-TERCP in a way that it can maintain the panel surface temperature during the targeted operating time. Therefore, the numerical model was developed using finite difference method to evaluate the thermal behaviour of PCM-TERCP. Experiments were also conducted to validate the performance of the developed model. Using the developed model, the possible operation time was investigated to determine the overall heat transfer coefficient required between radiant cooling panel and TEM. Consequently, the results showed that a overall heat transfer coefficient of 394 W/m2K is required to maintain the surface temperature between 16○C to 18○C for a 3 hours operation.


2019 ◽  
Vol 108 ◽  
pp. 01003
Author(s):  
Jan Taler ◽  
Piotr Dzierwa ◽  
Magdalena Jaremkiewicz ◽  
Dawid Taler ◽  
Karol Kaczmarski ◽  
...  

Thick-wall components of the thermal power unit limit maximum heating and cooling rates during start-up or shut-down of the unit. A method of monitoring the thermal stresses in thick-walled components of thermal power plants is presented. The time variations of the local heat transfer coefficient on the inner surface of the pressure component are determined based on the measurement of the wall temperature at one or six points respectively for one- and three-dimensional unsteady temperature fields in the component. The temperature sensors are located close to the internal surface of the component. A technique for measuring the fastchanging fluid temperature was developed. Thermal stresses in pressure components with complicated shapes can be computed using FEM (Finite Element Method) based on experimentally estimated fluid temperature and heat transfer coefficient


2009 ◽  
Vol 62-64 ◽  
pp. 694-699 ◽  
Author(s):  
E. Akpabio ◽  
I.O. Oboh ◽  
E.O. Aluyor

Shell and tube heat exchangers in their various construction modifications are probably the most widespread and commonly used basic heat exchanger configuration in the process industries. There are many modifications of the basic configuration which can be used to solve special problems. Baffles serve two functions: Most importantly, they support the tubes in the proper position during assembly and operation and prevent vibration of the tubes caused by flow-induced eddies, and secondly, they guide the shell-side flow back and forth across the tube field, increasing the velocity and the heat transfer coefficient. The objective of this paper is to find the baffle spacing at fixed baffle cut that will give us the optimal values for the overall heat transfer coefficient. To do this Microsoft Excel 2003 package was employed. The results obtained from previous studies showed that to obtain optimal values for the overall heat transfer coefficient for the shell and tube heat exchangers a baffle cut of 20 to 25 percent of the diameter is common and the maximum spacing depends on how much support the tubes need. This was used to validate the results obtained from this study.


Sign in / Sign up

Export Citation Format

Share Document