scholarly journals A numerical model and validation of phase change material integrated thermoelectric radiant cooling panel

2019 ◽  
Vol 111 ◽  
pp. 01001
Author(s):  
Hansol Lim ◽  
Hye-Jin Cho ◽  
Seong-Yong Cheon ◽  
Soo-Jin Lee ◽  
Jae-Weon Jeong

A phase change material based radiant cooling panel with thermoelectric module (PCM-TERCP) is proposed in this study. It consists of two aluminium panels, and phase change materials (PCMs) sandwiched between the two panels. Thermoelectric modules (TEMs) are attached to one of the aluminium panels, and heat sinks are attached to the top side of TEMs. PCM-TERCP is a thermal energy storage concept equipment, in which TEMs freeze the PCM during the night whose melting temperature is 16○C. Therefore, the radiant cooling panel can maintain a surface temperature of 16◦C without the operation of TEM during the day. Furthermore, it is necessary to design the PCM-TERCP in a way that it can maintain the panel surface temperature during the targeted operating time. Therefore, the numerical model was developed using finite difference method to evaluate the thermal behaviour of PCM-TERCP. Experiments were also conducted to validate the performance of the developed model. Using the developed model, the possible operation time was investigated to determine the overall heat transfer coefficient required between radiant cooling panel and TEM. Consequently, the results showed that a overall heat transfer coefficient of 394 W/m2K is required to maintain the surface temperature between 16○C to 18○C for a 3 hours operation.

Author(s):  
Andrea Helmns ◽  
Van P. Carey

In this paper, we investigate sensible and latent heat transfer through heat exchanger matrix structures containing phase change material (PCM) in the interstitial spacing. The heat transfer is driven by a temperature difference between fluid flow passages and the phase change material matrix which experiences sensible heat transfer until it reaches the phase change material fusion point; then it undergoes melting or solidification in order to store, or reject, energy. In prior work, a dimensionless framework was established to model heat transfer in a thermal energy storage (TES) device much like effectiveness-NTU analysis methods for compact heat exchangers. A key difference, however, is that in TES units, the overall heat transfer coefficient, U, within the phase change material matrix varies spatially in the unit and with time during storage or extraction. Determination of a mean U for these processes is a key challenge to applying the effectiveness-NTU analysis to design of a TES unit. This paper assesses and identifies strategies for determining the matrix overall heat transfer coefficient in a TES unit from model predictions or experiments. The sensitivity of the TES energy efficiency to the matrix overall heat transfer coefficient is also explored, and the implications for some typical applications are discussed.


Buildings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 217 ◽  
Author(s):  
Joanna Krasoń ◽  
Przemysław Miąsik ◽  
Lech Lichołai ◽  
Bernardeta Dębska ◽  
Aleksander Starakiewicz

The article presents a comparative analysis carried out using three methods, determining the heat transfer coefficient U for a ceramic product modified with a phase change material (PCM). The purpose of the article is to determine the convergence of the resulting thermal characteristics, obtained using the experimental method, numerical simulation, and standard calculation method according to the requirements of PN-EN ISO 6946. The heat transfer coefficient is one of the basic parameters characterizing the thermal insulation of a building partition. Most often, for the thermal characteristics of the partition, we obtain from the manufacturer the value of the thermal conductivity coefficient λ for individual homogeneous materials or the heat transfer coefficient U for the finished (prefabricated) partition. In the case of a designed composite element modified with a phase change material or other material, it is not possible to obtain direct information on the above parameter. In such a case, one of the methods presented in this article should be used to determine the U factor. The U factor in all analyses was determined in stationary conditions. Research has shown a significant convergence of the resulting value of the heat transfer coefficient obtained by the assumed methods. Thanks to obtaining similar values, it is possible to continue tests of thermal characteristics of partitions by means of numerical simulation, limiting the number of experimental tests (due to the longer test time required) in assumed different partition configurations, in stationary and dynamic conditions.


Author(s):  
Laura Small ◽  
Fatemeh Hassanipour

This study presents numerical simulations of forced convection with parachute-shaped encapsulated phase-change material particles in water, flowing through a square cross-section duct with top and bottom iso-flux surfaces. The system is inspired by the gas exchange process in the alveolar capillaries between the red blood cells (RBC) and the lung tissue. The numerical model was developed for the motion of elongated encapsulated phase change particles along a channel in a particulate flow where particle diameters are comparable with the channel height. Results of the heat transfer enhancement for the parachute-shaped particles are compared with the circular particles. Results reveal that the key role in heat transfer enhancement is the snugness movement of the particles and the parachute-shaped geometry yields small changes in heat transfer coefficient when compared to the circular ones. The effects of various parameters including particle diameter and volume-fraction, as well as fluid speed, on the heat transfer coefficient is investigated and reported in this paper.


Author(s):  
Jorge L. Alvarado ◽  
Charles Marsh ◽  
Curt Thies ◽  
Guillermo Soriano ◽  
Paritosh Garg

In the last decade, microencapsulated phase change material (MPCM) slurries have been proposed and studied as novel coolants for heat transfer applications. Such applications include electronics cooling, and secondary coolants in air conditioning systems among others. Experiments have shown that MPCM’s increase the overall thermal capacity of thermal systems by taking advantage of the phase change material’s latent heat of fusion. However, research has also shown that the overall heat transfer coefficient is diminished due to a reduction in the effective thermal conductivity and increased viscosity of the slurry. For this reason, there is an urgent need to modify the content of microcapsules containing phase change material to increase their effective thermal conductivity and the overall heat transport process. Our solution consists of increasing the thermal conductivity of MPCM by adding carbon nanotubes to the shell and core of the microcapsules. Carbon nanotubes have shown to increase the thermal conductivity of liquids by 40% or more in recent experiments. In this paper, MPCM slurry containing octadecane as phase change material and multi-wall carbon nanotubes (MWCNTs) embedded in the capsule material and core are compared with pure water as heat transfer fluid. Thermal and physical properties of MPCM slurry containing carbon nanotubes were determined using a differential scanning calorimeter and concentric viscometer, respectively. Experimental convective heat transfer coefficient data for MWCNT aqueous suspensions under laminar flow and constant heat flux were determined using a bench-top heat transfer loop. Experimental heat transfer results are presented.


2016 ◽  
Vol 138 (7) ◽  
Author(s):  
María A. Izquierdo-Barrientos ◽  
C. Sobrino ◽  
José A. Almendros-Ibáñez

The objective of this work is to model the heat transfer coefficient between an immersed surface and fixed and bubbling fluidized beds of granular phase change material (PCM). The model consists of a two-region model with two different voidages in which steady and transient conduction problems are solved for the fixed and fluidized bed cases, respectively. The model is validated with experimental data obtained under fixed and fluidized conditions for sand, a common material used in fixed and fluidized beds for sensible heat storage, and for a granular PCM with a phase change temperature of approximately 50 °C. The superficial gas velocity is varied to quantify its influence on the convective heat transfer coefficient for both the materials. The model proposed for the PCM properly predicts the experimental results, except for high flow rates, which cause the contact times between the surface and particles to be very small and lead the model to overpredict the results.


1996 ◽  
Vol 24 (2) ◽  
pp. 119-123
Author(s):  
A. Macías-Machín ◽  
V. Henríquez ◽  
A. Lozano

An experiment to calculate the heat transfer coefficient using a phase change material is described. The various tests use a naphthalene ball which changes from solid to gas. The technique is simple and inexpensive, and it is capable of yielding meaningful results. It will be seen that the heat transfer rises with the temperature and air flowrate. Also, students will be encouraged to analyse their own results and to find other variations to this experiment. This will considerably enhance the students' understanding of the processes at work.


1996 ◽  
Vol 118 (2) ◽  
pp. 334-342 ◽  
Author(s):  
A. P. Bhansali ◽  
W. Z. Black

The local variation in the heat transfer coefficient for an axisymmetric, turbulent, submerged liquid jet impinging on a nonuniform boundary of a phase-change material is measured with an ultrasonic measurement technique. The time required for an acoustic wave to traverse the phase-change material is measured with an ultrasonic transducer and the time data are converted into local thickness profiles of the phase-change material via knowledge of the longitudinal acoustic velocity in the material. An energy balance at the melt interface between the impinging jet and the phase-change material is used in conjunction with the local thickness profile data to determine the local variation in the heat transfer coefficient. The phase-change material is originally flat, but its shape changes with time as the heated jet melts a complex shape into its surface. The heat transfer rate over the surface of the melting interface is shown to vary with time as a result of the changing shape of the phase change material. A deep cavity is melted into the solid at the stagnation point and secondary cavities are melted into the interface for certain jet flow rates and surface spacings between the jet nozzle and the melt interface. When secondary cavities are produced, secondary peaks in the local heat transfer coefficient are observed. The heat transfer data are formulated into two Nusselt number correlations that are functions of the dimensionless time, dimensionless radius, dimensionless jet-to-surface spacing, and jet Reynolds number. One correlation is formulated for all locations along the surface of the phase-change material except the stagnation point, and a second correlation is valid at the stagnation point.


Author(s):  
Rami Sabbah ◽  
Jamal Yagoobi ◽  
Said Al Hallaj

This experimental and numerical study investigates Micro-Encapsulated Phase Change Material (MEPCM) heat transfer characteristics and corresponding pressure drop. To conduct this study, an experimental setup consisting of a steel tube with an inner diameter of 4.3mm, outer diameter of 6.5mm and a length of 1,016mm is selected. A MEPCM mass concentration of 20% slurry with particle diameter ranging between 5–15μm is included in this study. Tube wall temperature profile, fluid inlet, outlet temperatures, the pressure drop across the tube are measured and corresponding Nusselt number are determined for various operating conditions. The experimental results are used to validate the numerical model predictions. The numerical model results show good agreement with the experimental data under various operating conditions. The controlling parameters are identified and their effects on the heat transfer characteristics of micro-channels with MEPCM slurries are evaluated.


Sign in / Sign up

Export Citation Format

Share Document