CAM Software Development for Laminated Tooling: Lamination Cutting Trajectory Algorithms

2000 ◽  
Author(s):  
Yong-Tai Im ◽  
Daniel F. Walczyk

Abstract This paper addresses the research and development of a Computer-Aided Manufacturing (CAM) software package used for fabricating Profiled-Edge Lamination (PEL) tooling. Background research in PEL tooling is reviewed and possible applications for PEL tooling in seven different manufacturing processes are examined. The general PEL tooling process is outlined and the fundamental role that the CAM software plays in this process are discussed. The CAM software is used to create and simulate appropriate line-of-sight cutting trajectories for an Abrasive Water Jet (AWJ) cutting machine. Using this CAM software, PEL cutting trajectories and the resulting PEL tool shape can be compared with the original CAD tool shape. After the tool shape is evaluated, the CAM software exports CNC G-code to an AWJ cutting machine for cutting individual laminations. Four algorithms have been developed to create suitable cutting trajectories for PELs. Each algorithm is evaluated through simulation using the benchmark tool shape. As a result of this evaluation, one particular algorithm was found to be the most promising because it 1) successfully produces sharp edges with no loss of original shape, 2) allows unlimited tool orientation, and 3) better handles complicated tooling geometries. Finally, future work to validate the cutting trajectory algorithms is outlined.

2002 ◽  
Vol 124 (3) ◽  
pp. 754-761 ◽  
Author(s):  
Yong-Tai Im ◽  
Daniel F. Walczyk

Profiled Edge Lamination (PEL) tooling is a promising Rapid Tooling (RT) method involving the assembly of an array of laminations whose top edges are simultaneously profiled and beveled based on a CAD model of the intended tool surface. To facilitate adoption of this RT method by industry, a comprehensive PEL Tooling Development System has been proposed. The two main parts of this system are (1) iterative tool design based on thermal and structural models and (2) fabrication of the tool using a Computer-aided Manufacturing (CAM) software and Abrasive Water Jet (AWJ) cutting. CAM software has been developed to take lamination slice data (profiles) from any proprietary RP software in the form of polylines and create smooth, kinematically desirable cutting trajectories for each tool lamination. Two cutting trajectory algorithms, called Identical Equidistant Profile Segmentation (IEPS) and Adaptively Vectored Profiles Projection (AVPP), were created for this purpose. By comparing the performance of both algorithms with a benchmark part shape, the AVPP algorithm provided better cutting trajectories for complicated tool geometries. A 15-layer aluminum PEL tool was successfully fabricated using a 5-axis CNC AWJ cutter and NC code generated by the CAM software.


INFO-TEKNIK ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 29
Author(s):  
Agus Dani

Micrometer spanner is a tool that calibrate the micrometer in order to provide precise measurement results. Size of micrometer spanner is relatively small, making it easy lose and easily damaged. Micrometer calibration performed with improper equipment will cause the micrometer not to be precise. This research aims to obtain dies design and simulation process of making dies press tool micrometer spanner by using CAD CAM software. The results of the study are presstool dies design, simulation of wire cut process and G Code of CNC wire cut.


1992 ◽  
Vol 128 ◽  
pp. 141-142
Author(s):  
Ramesh Narayan ◽  
J.P. Ostriker

AbstractFrom a study of the intensity and polarization data of a large number of pulsars, Lyne and Manchester (1988) showed that pulsar beams are essentially circular in cross-section, and confirmed that pulse widths are inversely correlated with pulse period. Using a homogeneous sub-sample of 80 “cone-dominated” pulsars from their compilation, we find an inverse correlation between pulse width and radio luminosity. We conclude that pulsar beams become wider at lower luminosities. This effect is expected since pulse profiles are observed to fall-off smoothly at their edges, thus showing that pulsar beams do not have sharp edges. If beams do become wider at lower luminosities, then some of the dispersion in the observed pulsar luminosities is not intrinsic, but merely due to varying offsets of the line-of-sight from the beam center. In view of this, one should re-examine the usual procedure of independently modeling the luminosity and beaming in pulsar statistics calculations. We expect that a self-consistent approach that includes luminosity and beaming within a single model will indicate that the “effective” beam size for statistical calculations is significantly larger (by a factor ~2) than the size one usually estimates based on the observed sample of high-luminosity pulsars.


2000 ◽  
Vol 18 (9) ◽  
pp. 1128-1144 ◽  
Author(s):  
J.-M. A. Noël ◽  
J.-P. St.-Maurice ◽  
P.-L. Blelly

Abstract. The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohm's law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work). We present the essential elements of this new model and illustrate the model's usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred µA m-2 can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.Key words: Ionosphere (auroral ionosphere, electric fields and currents, ionosphere-magnetosphere interactions)


Author(s):  
Muhammad Abdulrahim Rabbani Md Sharizam ◽  
◽  
Saiful Bahri Mohamed ◽  
Tengku Mohd Shahrir Tengku Sulaiman ◽  
Zammeri Abd Rahman ◽  
...  

STEP is a general data format that observes the international standard ISO 10303-21. STEP means Standard for the Exchange of Product model data. It consists of the 3D geometry of a computer-aided design (CAD) model in the configuration of boundary representation (B-rep). By extracting, refining and decoding the geometric data correctly, the data can be utilized for writing G-code for Computer Numerical Control (CNC) machining application. Usually G-codes can either be manually generated by skilled machinists or automatically generated by computer-aided manufacturing (CAM) software. However, manually generated G-code is inefficient and susceptible to error. Meanwhile automated generation G-code requires significant setup cost. This paper describes the design and development of an integrated interface system, an instrument aimed to be used to analyze STEP files and generate machining tool path based on ISO 6983 format. This developed interface reduces the need for high setup cost as well as eliminates human limitations. The interface at present is able of detecting circular machining features on the workpiece. Circular machining features are created by 3D modelling software and retained as STEP file. The STEP file which contains geometrical data is then uploaded to the interface system as an input file which is structurally analyzed and processed. Finally, the ideal machining tool path in the G Code format is proposed and generated. By bypassing the CAM software and its proprietary post processor, the outcome of this research is important to enhance compatibility between different CNC machine systems


Author(s):  
John C. Steuben ◽  
Athanasios P. Iliopoulos ◽  
John G. Michopoulos

One crucial component of the additive manufacturing software toolchain is a class of geometric algorithms known as “slicers.” The purpose of the slicer is to compute a parametric toolpath defined at the mesoscale and associated g-code commands, which direct an additive manufacturing system to produce a physical realization of a three-dimensional input model. Existing slicing algorithms operate by application of geometric transformations upon the input geometry in order to produce the toolpath. In this paper we introduce an implicit slicing algorithm that computes mesoscale toolpaths from the level sets of heuristics-based or physics-based fields defined over the input geometry. This enables computationally efficient slicing of arbitrarily complex geometries in a straight forward fashion. The calculation of component “infill” is explored, as a process control parameter, due to its strong influence on the produced component’s functional performance. Several examples of the application of the proposed implicit slicer are presented. It is demonstrated — via proper experimentation — that the implicit slicer can produce a mesoscale structure leading to objects of superior functional performance such as greatly increased stiffness and ultimate strength without an increase of mass. We conclude with remarks regarding the strengths of the implicit approach relative to existing explicit approaches, and discuss future work required in order to extend the methodology.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yuanyuan Fan ◽  
Liu Liu ◽  
Shuoshuo Dong ◽  
Lingfan Zhuang ◽  
Jiahui Qiu ◽  
...  

As one of the mainstream technologies of vehicle-to-everything (V2X) communication, Cellular-V2X (C-V2X) provides high reliability and low latency V2X communications. And with the development of mobile cellular systems, C-V2X is evolving from long-term evolution-V2X (LTE-V2X) to new radio-V2X (NR-V2X). However, C-V2X test specification has not been completely set in the industry. In order to promote the formulation of relevant standards and accelerate the implementation of industrialization, the field test and analysis based on LTE-V2X in the industrial park scenario is conducted in this paper. Firstly, key technologies of LTE-V2X are introduced. Then, the specific methods and contents of this test are proposed, which consists of functional and network performance tests to comprehensively evaluate the communication property of LTE-V2X. Static and dynamic tests are required in both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios to evaluate network performance. Next, the test results verify that all functions are normal, and the performance evaluation indexes are appraised and analyzed. Finally, it summarizes the whole paper and puts forward the future work.


eLEKTRIKA ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Iklil Vurqon Choirony ◽  
Mohammad Slamed Hariyanto ◽  
Miftachul Ulum ◽  
Achmad Ubaidillah ◽  
Haryanto Haryanto ◽  
...  

<p><em><span lang="EN-US">The purpose of this research is to design and implement an automatic acrylic carving and cutting tool using a microcontroller-based 3-axis CNC machine. Computer Numerical Control (CNC) is a machine technology that is operated automatically to support the demand for a product that has a complex shape and high accuracy. In general, the construction of a 3-axis CNC machine and its working system is synchronization between the computer and its mechanics. This tool has a work process by utilizing the G-Code method as a command on the machine to carry out engraving and cutting automatically. The G-code was obtained from a previously designed image and then converted using the Aspire 9.0 software. Engraving and cutting is done by sending the G-code file to the microcontroller via the Universal G-code Sender software, then the microcontroller sends a signal to drive the motor driver which then drives the stepper motor so that the actuator movement is generated according to the image in the G-code file. Simultaneously the spindle motor will be active to engrave or cut acrylic. In this study, a trial scenario was carried out to determine the precision and accuracy of the tool, namely by engraving and cutting flat shapes such as squares, circles, triangles and segments. The percentage of success generated from this tool is 97,08% to 100%. Furthermore, testing is carried out to make products in the form of engraving writing, logos and calligraphy. Apart from that, we also tested cutting letters and key chains. When the test is carried out, the accuracy level is 1mm. </span></em></p>


2013 ◽  
Vol 368 (1630) ◽  
pp. 20120415 ◽  
Author(s):  
James J. H. St Clair ◽  
Christian Rutz

The ability to attend to the functional properties of foraging tools should affect energy-intake rates, fitness components and ultimately the evolutionary dynamics of tool-related behaviour. New Caledonian crows Corvus moneduloides use three distinct tool types for extractive foraging: non-hooked stick tools, hooked stick tools and tools cut from the barbed edges of Pandanus spp. leaves. The latter two types exhibit clear functional polarity, because of (respectively) a single terminal, crow-manufactured hook and natural barbs running along one edge of the leaf strip; in each case, the ‘hooks’ can only aid prey capture if the tool is oriented correctly by the crow during deployment. A previous experimental study of New Caledonian crows found that subjects paid little attention to the barbs of supplied (wide) pandanus tools, resulting in non-functional tool orientation during foraging. This result is puzzling, given the presumed fitness benefits of consistently orienting tools functionally in the wild. We investigated whether the lack of discrimination with respect to (wide) pandanus tool orientation also applies to hooked stick tools. We experimentally provided subjects with naturalistic replica tools in a range of orientations and found that all subjects used these tools correctly, regardless of how they had been presented. In a companion experiment, we explored the extent to which normally co-occurring tool features (terminal hook, curvature of the tool shaft and stripped bark at the hooked end) inform tool-orientation decisions, by forcing birds to deploy ‘unnatural’ tools, which exhibited these traits at opposite ends. Our subjects attended to at least two of the three tool features, although, as expected, the location of the hook was of paramount importance. We discuss these results in the context of earlier research and propose avenues for future work.


1967 ◽  
Vol 31 ◽  
pp. 171-172
Author(s):  
Th. Schmidt-Kaler

The integralNHof neutral-hydrogen density along the line of sight is determined from the Kootwijk and Sydney surveys. The run ofNHwith galactic longitude agrees well with that of thermal continuous radiation and that of the optical surface brightness of the Milky Way.


Sign in / Sign up

Export Citation Format

Share Document