awj cutting
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 1)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 345
Author(s):  
Martin Tyč ◽  
Irena M. Hlaváčová ◽  
Pavel Barták

The presented research was aimed at finding a suitable tool and procedure for monitoring undercuts or other problems such as cutting without abrasive or inappropriate parameters of the jet during the abrasive water jet (AWJ) cutting of hard-machined materials. Plates of structural steel RSt 37-2 of different thickness were cut through by AWJ with such traverse speeds that cuts of various qualities were obtained. Vibrations of the workpiece were monitored by three accelerometers mounted on the workpiece by a special block that was designed for this purpose. After detecting and recording vibration signals through the National Instruments (NI) program Signal Express, we processed this data by means of the LabVIEW Sound and Vibration Toolkit. Statistical evaluation of data was performed, and RMS was identified as the parameter most suitable for online vibration monitoring. We focus on the analysis of the relationship between the RMS and traverse speed.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7768
Author(s):  
Adam Štefek ◽  
Martin Tyč

Several titanium alloys, i.e., grade 2 Ti, Ti6Al4V and NiTi alloy, prepared by selected deformation procedures were subjected to abrasive water jet (AWJ) cutting and subsequently analysed. The study describes samples’ preparations and respective material structures. The impact of deformation processing of the selected alloys on the declination angle during cutting, and the results of measurements of surface wall quality performed for the selected samples at the Department of Physics of Faculty of Electrical Engineering and Computer Science at VŠB–Technical University of Ostrava, are presented and discussed, as are also the influences of structural features of the processed titanium alloys on surface qualities of the investigated samples. The results showed that the highest resistance to AWJ machining exhibited the Ti6Al4V alloy prepared by forward extrusion. Its declination angle (recalculated to the thickness 10 mm to compare all the studied samples) was 12.33° at the traverse speed of 100 mm/min, pumping pressure of 380 MPa, and abrasive mass flow rate of 250 g/min.


Author(s):  
Manthan N. Varia

Abstract: Abrasive water-jet machining operates by the impingements of a high velocity abrasive laden water-jet against the work piece. The jet is formed by mixing abrasive particles with high-velocity water in the mixing region and is forced through the orifice. The accelerated jet exiting the nozzle travels at a very high velocity and cuts as it passes through the work piece. It is a difficult task of predicting the values of major cutting performance measures in Abrasive Water Jet (AWJ) cutting. AWJ cutting process involves a large number of process and material parameters, which are related to the water-jet, the abrasive particles, and work-piece material. Those parameters are expected to affect the material removal rates and depth of penetration. In this paper, various models of wear by particle erosion and the most accepted models for predicting the depth of penetration in AWJ cutting are reviewed. However, there has been very little reported study on AWJ machining using various abrasive particles. In this paper, an attempt has been made for the development of the predictive mathematical model for AWJ cutting with various abrasive particles having different geometrical shapes and physical properties. Also, their effect on the target material has also been studied. Afterward, this model is verified with the experimental investigation. Keywords: AWJM, Abrasive, Mathematical-Modelling, Manufacturing, Water-Jet


2021 ◽  
Vol 13 (21) ◽  
pp. 12275
Author(s):  
Giovanni Guglielmi ◽  
Benjamin Mitchell ◽  
Cuihong Song ◽  
Brad L. Kinsey ◽  
Weiwei Mo

Abrasive waterjet (AWJ) cutting is a manufacturing technique, which uses a high-speed waterjet as the transport medium for abrasive particles to erode and cut through metal workpieces. The use of abrasives has significant environmental impacts and leads to the high operating costs of AWJ cutting. Therefore, it is important to investigate whether other metal cutting approaches can perform the same tasks with reduced environmental and economic impacts. One such manufacturing innovation is water droplet machining (WDM). In this process, the waterjet, which is immersed in a sub-atmospheric pressure environment, is discretized into a train of high velocity water droplets, which are able to erode and cut through the metal workpiece without abrasives. However, the cutting velocity of WDM is two orders of magnitude slower than AWJ. In this paper, a comparative life cycle and life cycle cost assessments were performed to determine which waterjet cutting technology is more beneficial to the environment and cost-efficient, considering their impacts from cradle to grave. The results show lower environmental and economic impacts for AWJ compared to WDM due to the AWJ’s ability to cut more metal over the service life than the WDM. Further sensitivity analyses give insight into how the change in abrasive rate is the most sensitive input for the AWJ, whereas the machine lifetime and electricity usage are the most sensitive inputs for the WDM. These results provide a valuable comparison between these alternative waterjet cutting technologies.


2021 ◽  
Vol 11 (20) ◽  
pp. 9410
Author(s):  
Jaka Dugar ◽  
Awais Ikram ◽  
Franci Pušavec

Sintered zinc oxide (ZnO) ceramic is a fragile and difficult-to-cut material, so finishing operations demand handling cautious and accurate surface tolerances by polishing, grinding, or machining. The conventional machining methods based on grinding and lapping offer limited productivity and high scalability; therefore, their incapacity to prepare tight tolerances usually end up with uncontrolled edge chipping and rough surfaces in the final products. This study investigates microstructural features with surface roughness in a comparative mode for conventional milling and abrasive waterjet cutting (AWJ). Edge topography and roughness maps are presented in this study to weigh the benefits of AWJ cutting over the conventional material removal methods by altering the feed rates. The porosity analysis implies that the differences during the multi-channel processing of varistors, which tend to alter the microstructure, should in turn exhibit a different response during cutting. The surface roughness, edge contours, and porosity generation due to shear forces are interpreted with the help of 3D optical and electron microscopy. The results demonstrate that the surface microstructure can have a noteworthy impact on the machining/cutting characteristics and functionality, and in addition, mechanical properties of ZnO varistors can fluctuate with non-uniform microstructures.


2021 ◽  
Author(s):  
Ioan Alexandru Popan ◽  
Nicolae Bâlc ◽  
Alina Ioana Popan

Abstract Carbon Fibre Reinforced Polymer (CFRP) is used in top industries like aerospace, automotive or medicine. Abrasive water jet (AWJ) technology has demonstrated its capacity in machining CFRP parts with a high dimensional accuracy due to its low mechanical loading, reduced machining temperature, high productivity, reduced tooling, and environmental friendliness. An important challenge when machining composite materials with AWJ is material delamination, determined by the high-speed water jet hitting the material during the piercing process. It is the ideal tool for cutting complex CFRP parts, in cases where the piercing point is outside of the workpiece. The challenge lies in machining features where material piercing is required, like holes, slots or internal contours. This paper presents a method of piercing the composite materials with abrasive water jet, that can avoid delamination. The method requires adding the abrasive particles in the water jet at the very beginning of jet formation, thus obtaining a mixed abrasive water jet during the first impact with the composite workpiece. A new cutting system was designed and set up based on the proposed piercing method and was compared with a conventional AWJ cutting system. The insertion of the abrasive particles into the water jet was monitored by using acoustic emission (AE). An analysis of the influence of piercing parameters (water pressure, standoff distance, abrasive inlet angle and abrasive delay time) on the delamination was conducted. The process outcomes such as hole surface integrity, delamination, particles embedment, uncut fibers and dimensional characteristics, were evaluated. The results show that the method is promising in reducing delamination.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4032
Author(s):  
Libor M. Hlaváč

Research performed by the author in the last decade led him to a revision of his older analytical models used for a description and evaluation of abrasive water jet (AWJ) cutting. The review has shown that the power of 1.5 selected for the traverse speed thirty years ago was influenced by the precision of measuring devices. Therefore, the correlation of results calculated from a theoretical model with the results of experiments performed then led to an increasing of the traverse speed exponent above the value derived from the theoretical base. Contemporary measurements, with more precise devices, show that the power suitable for the traverse speed is essentially the same as the value derived in the theoretical description, i.e., it is equal to “one”. Simultaneously, the replacement of the diameter of the water nozzle (orifice) by the focusing (abrasive) tube diameter in the respective equations has been discussed, because this factor is very important for the AWJ machining. Some applications of the revised model are presented and discussed, particularly the reduced forms for a quick recalculation of the changed conditions. The correlation seems to be very good for the results calculated from the present model and those determined from experiments. The improved model shows potential to be a significant tool for preparation of the control software with higher precision in determination of results and higher calculation speed.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3940
Author(s):  
Andrzej Perec

The size and distribution of abrasive particles have a significant influence on the effectiveness of the cutting process by the high-speed abrasive water jet (AWJ). This paper deals with the disintegration intensity of abrasive materials in AWJ cutting during the creation of the abrasive jet. An evaluation of the abrasive materials was performed after forming in the cutting head was carried out and grain distribution was evaluated using the geometric and logarithmic Folk and Ward method. The influence of the abrasive concentration of abrasive materials such as alluvial garnet, recycled garnet, corundum, and olivine on grain distribution was studied. A recovery analysis was also carried out and the recycling coefficient was determined for each abrasive material tested.


Author(s):  
Andrzej Perec

The size and distribution of abrasive particles have a significant influence on the effectiveness of the cutting process by the high-speed abrasive water jet (AWJ). The paper deal with the abrasive materials disintegration intensity in AWJ cutting during the creation of the abrasive jet. An evaluation of the abrasive materials grabbed after forming in the cutting head was carried out and its grain distribution was evaluated. Used here the arithmetic, geometric and logarithmic method of moments and Folk and Ward method. The influence of abrasive concentration of abrasive materials as alluvial garnet, recycled garnet, corundum, and olivine on grain distribution was studied. A recovery analysis was also carried out and the recycling coefficient for each tested abrasive material was determined.


Sign in / Sign up

Export Citation Format

Share Document