Modeling, Realization, and Simulation of Thermo-Fluid Coupled Systems Using Singularly Perturbed Sliding Manifolds

2000 ◽  
Author(s):  
Brandon W. Gordon ◽  
Harry Asada

Abstract A new approach based on sliding control is presented for modeling and simulation of thermo-fluid systems described by differential-algebraic equations (DAEs). The dynamics of thermo-fluid systems are often complicated by momentum interactions that occur on a time scale that is orders of magnitude faster than the time scale of interest. To address this problem the momentum equation is often modeled using algebraic steady state approximations. This will, in general, result in a model described by nonlinear DAEs for which few control methods are currently applicable. In this paper, the modeling problem is addressed using an approach that systematically constructs an explicit state space approximation of the DAEs. The state space model can in turn be used with existing control methods. This procedure, known as realization, is achieved by solving an associated nonlinear control problem by combining boundary layer sliding control with the singular perturbation method. The necessary criteria for key properties such as convergence are established. Further, the new approach is illustrated using a vapor compression cycle example. This demonstrates significant advantages over directly modeling momentum interactions.

2000 ◽  
Vol 122 (4) ◽  
pp. 699-707 ◽  
Author(s):  
Brandon W. Gordon ◽  
Harry Asada

A new approach based on sliding control is presented for modeling and simulation of thermo-fluid systems described by differential-algebraic equations (DAEs). The dynamics of thermo-fluid systems are often complicated by momentum interactions that occur on a time scale that is orders of magnitude faster than the time scale of interest. To address this problem the momentum equation is often modeled using algebraic steady state approximations. This will, in general, result in a model described by nonlinear DAEs for which few control methods are currently applicable. In this paper, the modeling problem is addressed using an approach that systematically constructs an explicit state space approximation of the DAEs. The state space model can in turn be used with existing control methods. This procedure, known as realization, is achieved by solving an associated nonlinear control problem by combining boundary layer sliding control with the singular perturbation method. The necessary criteria for key properties such as convergence, stability, and controllability are established. Further, the new approach is illustrated using a vapor compression cycle example. This demonstrates significant advantages over directly modeling momentum interactions. [S0022-0434(00)00904-7]


Aerospace ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 9 ◽  
Author(s):  
David Quero ◽  
Pierre Vuillemin ◽  
Charles Poussot-Vassal

In this work, a new approach for the generation of a generalized state-space aeroservoelastic model based on tangential interpolation is presented. The resulting system of differential algebraic equations (DAE) is reduced to a set of ordinary differential equations (ODE) by residualization of the non-proper part of the transfer function matrix. The generalized state-space is of minimal order and allows for the application of the force summation method (FSM) for the aircraft loads recovery. Compared to the classical rational function approximation (RFA) approach, the presented method provides a minimal order realization with exact interpolation of the unsteady aerodynamic forces in tangential directions, avoiding any selection of poles (lag states). The new approach is applied first for the generation of an aerodynamic model for the bidimensional unsteady incompressible flow in the time domain. Next, an application on the generation of an aeroservoelastic model for loads evaluation of the flutter reduced order assessment (FERMAT) model under atmospheric disturbances is done, showing an excellent agreement with the reference model in the frequency domain. The proposed aeroservoelastic model of minimal order is suited for loads analysis and multivariable control design, and an application to a gust loads alleviation (GLA) strategy is shown.


1992 ◽  
Vol 114 (2) ◽  
pp. 229-233 ◽  
Author(s):  
K. P. Jankowski ◽  
H. Van Brussel

This paper focuses on the problem of the application of inverse dynamics control methods to robots with flexible joints and electromechanical actuators. Due to drawbacks of the continuous-time inverse dynamics, discussed in the paper, a new control strategy in discrete-time is presented. The proposed control algorithm is based on numerical methods conceived for the solution of index-three systems of differential-algebraic equations. The method is computationally efficient and admits low sampling frequencies. The results of numerical experiments confirm the advantages of the designed control algorithm.


Author(s):  
Jiegao Wang ◽  
Clément M. Gosselin ◽  
Li Cheng

Abstract A new approach for the dynamic simulation of parallel mechanisms or mechanical systems is presented in this paper. This approach uses virtual springs and dampers to include the closed-loop constraints thereby avoiding the solution of differential-algebraic equations. Examples illustrating the approach are given and include the four-bar mechanism with both rigid and flexible links as well as the 6-dof Gough-Stewart platform. Simulation results are given for the four-bar linkages and the 6-dof manipulator. The results achieve a good agreement with the results obtained from other conventional approaches.


2022 ◽  
Vol 12 (2) ◽  
pp. 890
Author(s):  
Paweł Dra̧g

An optimization task with nonlinear differential-algebraic equations (DAEs) was approached. In special cases in heat and mass transfer engineering, a classical direct shooting approach cannot provide a solution of the DAE system, even in a relatively small range. Moreover, available computational procedures for numerical optimization, as well as differential- algebraic systems solvers are characterized by their limitations, such as the problem scale, for which the algorithms can work efficiently, and requirements for appropriate initial conditions. Therefore, an αDAE model optimization algorithm based on an α-model parametrization approach was designed and implemented. The main steps of the proposed methodology are: (1) task discretization by a multiple-shooting approach, (2) the design of an α-parametrized system of the differential-algebraic model, and (3) the numerical optimization of the α-parametrized system. The computations can be performed by a chosen iterative optimization algorithm, which can cooperate with an outer numerical procedure for solving DAE systems. The implemented algorithm was applied to solve a counter-flow exchanger design task, which was modeled by the highly nonlinear differential-algebraic equations. Finally, the new approach enabled the numerical simulations for the higher values of parameters denoting the rate of changes in the state variables of the system. The new approach can carry out accurate simulation tests for systems operating in a wide range of configurations and created from new materials.


1998 ◽  
Vol 122 (4) ◽  
pp. 575-582 ◽  
Author(s):  
Radu Serban ◽  
Edward J. Haug

Models of the dynamics of multibody systems generally result in a set of differential-algebraic equations (DAE). State-space methods for solving the DAE of motion are based on reduction of the DAE to ordinary differential equations (ODE), by means of local parameterizations of the constraint manifold that must be often modified during a simulation. In this paper it is shown that, for vehicle multibody systems, generalized coordinates that are dual to suspension and/or control forces in the model are independent for the entire range of motion of the system. Therefore, these additional coordinates, together with Cartesian coordinates describing the position and orientation of the chassis, form a set of globally independent coordinates. In addition to the immediate advantage of avoiding the computationally expensive redefinition of local parameterization in a state-space formulation, the existence of globally independent coordinates leads to efficient algorithms for recovery of dependent generalized coordinates. A topology based approach to identify efficient computational sequences is presented. Numerical examples with realistic vehicle handling models demonstrate the improved performance of the proposed approach, relative to the conventional Cartesian coordinate formulation, yielding real-time for vehicle simulation. [S1050-0472(00)00404-9]


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2057
Author(s):  
Juan Tang ◽  
Yongsheng Rao

A new generation of universal tools and languages for modeling and simulation multi-physical domain applications has emerged and became widely accepted; they generate large-scale systems of differential algebraic equations (DAEs) automatically. Motivated by the characteristics of DAE systems with large dimensions, high index or block structures, we first propose a modified Pantelides’ algorithm (MPA) for any high order DAEs based on the Σ matrix, which is similar to Pryce’s Σ method. By introducing a vital parameter vector, a modified Pantelides’ algorithm with parameters has been presented. It leads to a block Pantelides’ algorithm (BPA) naturally which can immediately compute the crucial canonical offsets for whole (coupled) systems with block-triangular form. We illustrate these algorithms by some examples, and preliminary numerical experiments show that the time complexity of BPA can be reduced by at least O(ℓ) compared to the MPA, which is mainly consistent with the results of our analysis.


Author(s):  
Dan Negrut ◽  
Edward J. Haug

Abstract Three methods for the state-space based implicit integration of differential-algebraic equations of multibody dynamics are summarized and numerically compared. In the state-space approach, the time evolution of a mechanical system is characterized using a number of generalized coordinates equal with the number of degrees of freedom of the system. In this paper these independent generalized coordinates are a subset of the Cartesian position coordinates and orientation Euler parameters of body centroidal reference frames. Depending on the method, the independent generalized coordinates are implicitly integrated and dependent quantities (including Lagrange multipliers) are determined to satisfy constraint equations at position, velocity, and acceleration levels. Five computational algorithms based on the proposed methods are used to simulate the motion of a stiff 14-body vehicle model. Results show that the proposed methods deal effectively with challenges posed by stiff mechanical system simulation. A comparison with a state-space based explicit algorithm for the simulation of the same model indicates a speed-up of approximately two orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document