Effect of Dynamic Contact Angle on Single Bubbles During Nucleate Pool Boiling

Author(s):  
Abhijit Mukherjee ◽  
Satish G. Kandlikar

Nucleate pool boiling at low heat flux is typically characterized by cyclic growth and departure of single vapor bubbles from the heated wall. It has been experimentally observed that the contact angle at the bubble base varies during the ebullition cycle. In the present numerical study, dynamic advancing and receding contact angles obtained from experimental observations are specified at the base of a vapor bubble growing on a wall. The complete Navier-Stokes equations are solved and the liquid-vapor interface is captured using the level-set technique. The effect of dynamic contact angle on the bubble dynamics and vapor removal rate are compared to results obtained with static contact angle. The results show that bubble base exhibits a slip/stick behavior with dynamic contact angle though the overall effect on the vapor removal rate is small. Higher advancing contact angle is found to increase the vapor removal rate.

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 405
Author(s):  
Nicola Suzzi ◽  
Giulio Croce

The bifurcation analysis of a film falling down an hybrid surface is conducted via the numerical solution of the governing lubrication equation. Instability phenomena, that lead to film breakage and growth of fingers, are induced by multiple contamination spots. Contact angles up to 75∘ are investigated due to the full implementation of the free surface curvature, which replaces the small slope approximation, accurate for film slope lower than 30∘. The dynamic contact angle is first verified with the Hoffman–Voinov–Tanner law in case of a stable film down an inclined plate with uniform surface wettability. Then, contamination spots, characterized by an increased value of the static contact angle, are considered in order to induce film instability and several parametric computations are run, with different film patterns observed. The effects of the flow characteristics and of the hybrid pattern geometry are investigated and the corresponding bifurcation diagram with the number of observed rivulets is built. The long term evolution of induced film instabilities shows a complex behavior: different flow regimes can be observed at the same flow characteristics under slightly different hybrid configurations. This suggest the possibility of controlling the rivulet/film transition via a proper design of the surfaces, thus opening the way for relevant practical application.


Author(s):  
Eiji Ishii ◽  
Taisuke Sugii

Predicting the spreading behavior of droplets on a wall is important for designing micro/nano devices used for reagent dispensation in micro-electro-mechanical systems, printing processes of ink-jet printers, and condensation of droplets on a wall during spray forming in atomizers. Particle methods are useful for simulating the behavior of many droplets generated by micro/nano devices in practical computational time; the motion of each droplet is simulated using a group of particles, and no particles are assigned in the gas region if interactions between the droplets and gas are weak. Furthermore, liquid-gas interfaces obtained from the particle method remain sharp by using the Lagrangian description. However, conventional surface tension models used in the particle methods are used for predicting the static contact angle at a three-phase interface, not for predicting the dynamic contact angle. The dynamic contact angle defines the shape of a spreading droplet on a wall. We previously developed a surface tension model using inter-particle force in the particle method; the static contact angle of droplets on the wall was verified at various contact angles, and the heights of droplets agreed well with those obtained theoretically. In this study, we applied our surface tension model to the simulation of a spreading droplet on a wall. The simulated dynamic contact angles for some Weber numbers were compared with those measured by Šikalo et al, and they agreed well. Our surface tension model was useful for simulating droplet motion under static and dynamic conditions.


Author(s):  
Lance Austin Brumfield ◽  
Sunggook Park

The dynamic advancing and receding contact angles of 5μl water droplets were experimentally measured via the droplet impingement technique on a polished brass surface, one brass symmetric micro ratchet, and five brass asymmetric micro ratchet samples of varying dimensions. Droplets were released from varying heights (Weber number) and the impacts studied via high speed camera. Equilibrium advancing and receding contact angles were measured by placing a water droplet on the surfaces and tilting it. Contact angle values were then compared to an existing pool boiling model which incorporates the dynamic receding contact angle, surface roughness ratio, and equilibrium contact angle.


2018 ◽  
Vol 49 (5) ◽  
pp. 423-435 ◽  
Author(s):  
Amir Mirza Gheitaghy ◽  
Hamid Saffari ◽  
Seyyed Sina Arshadi ◽  
Seyyede Shahrzad Tabatabaei

Author(s):  
Dongin Yu ◽  
Chiwoong Choi ◽  
Moohwan Kim

At two-phase flow in microchannels, slug flow regime is different for wettability of surface. A slug in a hydrophilic microchannel has liquid film. However, a slug in a hydrophobic microchannel has no liquid film instead, the slug has triple-lines and makes higher pressure drop due to the motion of the triple-line. In previous researches, pressure drop of triple-line is depended of dynamic contact angle, channel diameter and fluid property. And, dynamic contact angle is depended of static contact angle, superficial velocity and fluid property. In order to understand the pressure drop of motion of triple-lines, pressure drop of slug with triple-lines in case of various diameters (0.546, 0.763, 1.018, 1.555, 2.075 mm), various fluids (D.I.water, D.I.water-1, 5, 10% ethanol mixture) and various superficial velocity (j = 0.01∼0.4 m/s) was measured. Dynamic contact angle was calculated from relation of the pressure drop of slug with triple-lines. Comparing with previous dynamic contact angle correlations, previous correlation underestimated dynamic contact angle in the region of this study. (10−4≤Ca≤10−3, 10−2≤We≤10−1, 68°≤θS≤110°)


2019 ◽  
Vol 894 ◽  
pp. 104-111
Author(s):  
Thanh Long Le ◽  
Jyh Chen Chen ◽  
Huy Bich Nguyen

In this study, the numerical computation is used to investigate the transient movement of a water droplet in a microchannel. For tracking the evolution of the free interface between two immiscible fluids, we employed the finite element method with the two-phase level set technique to solve the Navier-Stokes equations coupled with the energy equation. Both the upper wall and the bottom wall of the microchannel are set to be an ambient temperature. 40mW heat source is placed at the distance of 1 mm from the initial position of a water droplet. When the heat source is turned on, a pair of asymmetric thermocapillary convection vortices is formed inside the droplet and the thermocapillary on the receding side is smaller than that on the advancing side. The temperature gradient inside the droplet increases quickly at the initial times and then decreases versus time. Therefore, the actuation velocity of the water droplet first increases significantly, and then decreases continuously. The dynamic contact angle is strongly affected by the oil flow motion and the net thermocapillary momentum inside the droplet. The advancing contact angle is always larger than the receding contact angle during actuation process.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Nan Chen ◽  
Xiyu Chen ◽  
Antonio Delgado

The dynamic contact angle model is applied in the formation process of a series of bubbles from Period-I regime to Period-II regime by using the VOF method on a 2D axisymmetric domain. In the first process of the current research, the dynamic contact angle model is validated by comparing the numerical results to the experimental data. Good agreement in terms of bubble shape and bubble detachment time is observed from a lower flow rate Q = 150.8 cm3/min (Re = 54.77, Period-I regime) to a higher flow rate Q = 603.2 cm3/min (Re = 219.07, Period-III regime). The comparison between the dynamic contact angle model and the static contact angle model is also performed. It is observed that the static contact angle model can obtain similar results as the dynamic contact angle model only for smaller gas flow rates (Q ≤ 150.8 cm3/min and Re ≤ 54.77)). For higher gas flow rates, the static contact angle model cannot produce good results as the dynamic contact angle model and has larger relative errors in terms of bubble detachment time and bubble shape.


Sign in / Sign up

Export Citation Format

Share Document