Dynamic Modeling of an Overhead Valve Engine CAM-Follower System Using a Resistive Companion Dynamic Simulation Solver

Author(s):  
Daniel C. Sloope ◽  
David N. Rocheleau

A computer simulation model of the valve train of a Honda GX30 engine was modeled using Virtual Test Bed (VTB), a resistive companion dynamic simulation solver. Traditionally VTB has been exclusive to solving electrical system models but using the resistive companion equivalence of through and across variables, it can be applied to mechanical systems. This paper describes a dynamic simulation of an overhead valve engine cam-follower system using the VTB software application. The model was created to show valve train position, velocity and acceleration to aid in development of a camless engine being developed at the University of South Carolina. The mathematical model was created using governing dynamic equations. Using C++ programming, the mathematical model was transformed into a Virtual Test Bed model. The VTB model successfully shows valve train component position, velocity and acceleration. The significance of this work is its novelty in using the Virtual Test Bed environment to handle dynamic modeling of mechanical systems, whereas to date, VTB has been primarily focused on resistive companion modeling of power electronic systems. This work provides the foundation for using VTB to tackle more complex mechanical models.

Author(s):  
Eshwarprasad Thirunavukarasu ◽  
Ruixian Fang ◽  
Jamil A. Khan ◽  
Roger Dougal

Gas Turbine is a complex system and highly non linear in its overall performance. In order to study its impact on electric power quality under various load conditions, it is essential to create a high quality performance model of gas turbine to simulate its behavior in real time efficiently. This paper focuses on dynamic modeling of generic gas turbine model using alternate simulation environment for better feasibility. The model is developed on a virtual test bed which is an advanced dynamic simulation environment and can run a dynamic co-simulation effectively. The approach is by developing mathematical models of individual components of gas turbines and utilizing component performance map matching method to run the simulation. The paper discusses briefly about the VTB simulation environment and its use for dynamic modeling of gas turbine. The simulation studies carried out include design condition, off design condition and transient conditions. Working model of twin shaft turbine engine using compressor and turbine maps are validated with established gas turbine simulation software and results are shown.


2019 ◽  
Vol 151 ◽  
pp. 97-111
Author(s):  
B. Belmans ◽  
D. Aerts ◽  
S. Verbeke ◽  
A. Audenaert ◽  
F. Descamps

2002 ◽  
Vol 110 (2) ◽  
pp. 285-294 ◽  
Author(s):  
R.A. Dougal ◽  
S. Liu ◽  
L. Gao ◽  
M. Blackwelder

2000 ◽  
Vol 124 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Jurij Avsec ◽  
Milan Marcic ◽  
Maks Oblak

This paper describes a new type of valve gear cam—MULTICAM—which consists of seven curves and allows an optimum cam profile design. In order to calculate the cinematic and dynamic values and to assess the minimum oil film thickness in the valve gear, the mathematical model of an ideal valve gear was used. In addition, the comparison of the results between the polysine cam and the new MULTICAM cam design was made. By means of the new cam design the Hertz pressures were reduced at the point of contact between the cam and the cam follower and the lubrication properties at the top of the cam improved.


Sign in / Sign up

Export Citation Format

Share Document