Internal Condensing Flows Inside a Vertical Pipe: Experimental/Computational Investigations of Effects of Constrained and Natural Exit Conditions

Author(s):  
A. Narain ◽  
A. Siemionko ◽  
J. H. Kurita ◽  
T. W. Ng ◽  
N. Kim ◽  
...  

The flow and heat transfer rates inside a condenser depend on the specification of inlet, wall, and exit conditions. For steady/quasi-steady internal condensing flows (that involve compressible vapor at low Mach Numbers), the vapor’s ability to change its density — and hence interfacial mass transfer rates and associated locations of the interface — allows the flow to have a rather significant dependence on exit conditions. Both experimental and direct computational simulation results presented here show that this is indeed the case for flows of pure vapor experiencing film condensation on the inside walls of a vertical tube. In applications, the totality of boundary conditions are determined not only by the condenser; but also by the flow-loop (or the system) — of which the condenser is only a part. Therefore, the results outlined here should contribute towards a better understanding of the behavior (particularly the extent to which vapor compressibility effects affect the flow regimes of operation — i.e. annular, plug/churn, etc.) and response (transients due to start-up, system instabilities, etc.) of condensers in application systems (e.g. Rankine Cycle power plants, Capillary Pumped Loops, Looped Heat Pipes, etc.). In this connection, an experimental example of a relevant system instability is presented here. In summary, the experimental results presented here, and computational results presented elsewhere, reinforce the fact that there exist multiple steady solutions (with different heat transfer rates) for different exit conditions and that there also exists a “natural” steady solution for straight vertical condensers (circular and rectangular cross-sections).

Author(s):  
J. H. Kurita ◽  
A. Narain ◽  
M. Kivisalu ◽  
A. Siemionko ◽  
S. Kulkarni

Reported experimental and computational results confirm that both the flow features and heat transfer rates inside a condenser depend on the specification of inlet, wall, and exit conditions. The results show that the commonly occuring condensing flows’ special sensitivity to changes in exit conditions (i.e. changes in exit pressure) arise from the ease with which these changes alter the vapor flow field in the interior. When exit pressure is changed from one steady value to another, the changes required of the interior vapor flow towards achieving a new steady duct flow are such that they do not demand removal of the new exit pressure imposition back to the original steady value — as is the case for incompressible single phase duct flows with an original and “required” exit pressure. Instead, new steady flows may be achieved through appropriate changes in the vapor/liquid interfacial configurations and associated changes in interfacial mass, heat transfer rates (both local and overall), and other flow variables. This special feature of these flows is for the commonly occurring large heat sink situations for which the condensing surface temperature (not heat flux) remains approximately the same for any given set of inlet conditions while exit condition changes. In this paper’s context of flows of a pure vapor that experience film condensation on the inside walls of a vertical tube, the reported results provide important quantitative and qualitative understanding as well as allow us to propose important exit-condition based categorization (viz. Categories I – III) of these flows.


2007 ◽  
Vol 129 (10) ◽  
pp. 1352-1372 ◽  
Author(s):  
A. Narain ◽  
J. H. Kurita ◽  
M. Kivisalu ◽  
A. Siemionko ◽  
S. Kulkarni ◽  
...  

Reported experimental and computational results confirm that both the flow features and heat-transfer rates inside a condenser depend on the specification of inlet, wall, and exit conditions. The results show that the commonly occurring condensing flows’ special sensitivity to changes in exit conditions (i.e., changes in exit pressure) arises from the ease with which these changes alter the vapor flow field in the interior. When, at a fixed steady mass flow rate, the exit pressure is changed from one steady value to another, the changes required of the interior vapor flow toward achieving a new steady duct flow are such that they do not demand a removal of the new exit pressure imposition back to the original steady value—as is the case for incompressible single phase duct flows with an original and “required” exit pressure. Instead, new steady flows may be achieved through appropriate changes in the vapor/liquid interfacial configurations and associated changes in interfacial mass, heat-transfer rates (both local and overall), and other flow variables. This special feature of these flows has been investigated here for the commonly occurring large heat sink situations, for which the condensing surface temperature (not heat flux) remains approximately the same for any given set of inlet conditions while the exit-condition changes. In this paper’s context of flows of a pure vapor that experience film condensation on the inside walls of a vertical tube, the reported results provide an important quantitative and qualitative understanding and support an exit-condition-based categorization of the flows. Experimental results and selected relevant computational results that are presented here reinforce the fact that there exist multiple steady solutions (with different heat-transfer rates) for multiple steady prescriptions of the exit condition—even though the other boundary conditions do not change. However, for some situations that do not fix any specific value for the exit condition (say, exit pressure) but allow the flow the freedom to choose any exit pressure value within a certain range, experiments confirm the computational results that, given enough time, there typically exists, under normal gravity conditions, a self-selected “natural” steady flow with a natural exit condition. This happens if the vapor flow is seeking (or is attracted to) a specific exit condition and the conditions downstream of the condenser allow the vapor flow a range of exit conditions that includes the specific natural exit condition of choice. However, for some unspecified exit-condition cases involving partial condensation, even if computations predict that a natural exit-condition choice exists, the experimental arrangement employed here does not allow the flow to approach its steady natural exit-condition value. Instead, it only allows oscillatory exit conditions leading to an oscillatory flow. For the reported experiments, these oscillatory pressures are induced and imposed by the instabilities in the system components downstream of the condenser.


2003 ◽  
Author(s):  
Q. Liang ◽  
X. Wang ◽  
A. S. Barve ◽  
A. Narain

The paper presents accurate numerical solutions of the full 2D governing equations for steady and unsteady laminar/laminar internal condensing flows. The chosen geometry allows for film condensation on the bottom wall of a tilted (from vertical to horizontal) channel. It is found that it is important to know whether the exit conditions are constrained or unconstrained because incompressible vapor flows occur only for exit conditions that are unconstrained. For the incompressible vapor flow situations, a method for computationally obtaining the stable steady/quasi-steady solutions is given here and the resulting solutions are shown to be in good agreement with some relevant experimental data for horizontal channels. These solutions are shown to be sensitive to the frequency-content and strength of ever-present minuscule transverse vibrations of the condensing surface. The effects of noise-sensitivity, gravity (terrestrial to zero-gravity), and surface tension on the attainability of stable steady/quasi-steady solutions, structure of superposed waves, and heat-transfer rates are discussed. It is shown that significant enhancement in wave-energy and heat-transfer rates are possible by designing the condensing surface noise to be in resonance with the intrinsic waves.


Author(s):  
L. Phan ◽  
X. Wang ◽  
S. Kulkarni ◽  
A. Narain

The paper presents accurate numerical solutions of the full 2D governing equations for steady and unsteady laminar/laminar internal condensing flows of pure vapor (R-113 and FC-72) inside a vertical tube and a channel. The film condensation is on the inside wall of a tube or one of the walls of a channel (the lower wall in case of a downward sloping channel). The new geometry in this paper is the cylindrical in-tube geometry with axisymmetric flows (vertical 1g or 0g flows). The new results encompass both the cylindrical and the earlier studied channel geometry. Exit condition specifications are again found to be important. The computations are able to predict whether or not a steady flow exists under a natural exit condition (selected from a range of choices available at the exit). If natural steady/quasi-steady flows exist — as is shown to be the case for gravity dominated or strong shear dominated condensate flows — the computations are able to predict both the natural exit condition and the associated condensate flow’s point of transition from stable to unstable behavior. Compared to gravity driven, shear driven cases (zero gravity or horizontal cases) tend to destabilize easier and generally have much larger pressure drops, much slower wave speeds, much larger role of surface tension, and much narrower flow regime boundaries within which the vapor flow can be modelled incompressible. It is found that only in gravity driven cases, be it vertical in-tube or inclined channel geometry, interfacial waves are able to cause a concurrent enhancement in heat transfer rates along with an enhancement in interfacial shear. Also it is found that this enhancement is significant if the condensing surface noise is in resonance with the intrinsic waves.


1961 ◽  
Vol 83 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Michael Ming Chen

The boundary-layer equations for laminar film condensation are solved for (a) a single horizontal tube, and (b) a vertical bank of horizontal tubes. For the single-tube case, the inertia effects are included and the vapor is assumed to be stationary outside the vapor boundary layer. Velocity and temperature profiles are obtained for the case μvρv/μρ ≪ 1 and similarity is found to exist exactly near the top stagnation point, and approximately for the most part of the tube. Heat-transfer results computed with these similar profiles are presented and discussed. For the multiple-tube case, the analysis includes the effect of condensation between tubes, which is shown to be partly responsible for the high observed heat-transfer rate for vertical tube banks. The inertia effects are neglected due to the insufficiency of boundary-layer theory in this case. Heat-transfer coefficients are presented and compared with experiments. The theoretical results for both cases are also presented in approximate formulas for ease of application.


1996 ◽  
Vol 63 (2) ◽  
pp. 529-538 ◽  
Author(s):  
A. Narain

Internal flow of pure vapor experiencing film condensation on the walls of a straight horizontal duct is studied. The commonly occurring annular case of turbulent (or laminar) vapor flow in the core and laminar flow of the liquid condensate—with or without waves on the interface—is emphasized. We present a new methodology which models interfacial shear with the help of theory, computations, and reliable experimental data on heat transfer rates. The theory—at the point of onset of condensation—deals with issues of asymptotic form of interfacial shear, nonuniqueness of solutions, and selection of the physically admissible solution by a stability type criteria. Other details of the flow are predicted with the help of the proposed modeling approach. These predictions are shown to be in agreement with relevant experimental data. The trends for film thickness, heat transfer rates, and pressure drops are also made available in the form of power-law correlations.


Author(s):  
Shuai Ren ◽  
Wenzhong Zhou

Abstract Pool boiling and in-tube condensation phenomena have been investigated intensively during the past decades, due to the superior heat transfer capacity of the phase change process. In passive heat removal heat exchangers of nuclear power plants, the two phase-change phenomena usually occur simultaneously on both sides of the tube wall to achieve the maximum heat transfer efficiency. However, the studies on the effects of in-tube condensation on external pool boiling heat transfer are very limited, especially in numerical computation aspect. In the present study, the saturated pooling boiling over a vertical tube under the influences of in-tube steam condensation is investigated numerically. The Volume of Fluid (VOF) interface tracking method is employed based on the 2D axisymmetric Euler-Euler multiphase frame. The phase change model combining with a mathematical smoothing algorithm and a temporal relaxation procedure has been implemented into CFD platform by user defined functions (UDFs). The two-phase flow pattern and bubble behavior have been analyzed. The effects of inlet steam mass flow rate on boiling heat transfer are discussed.


Sign in / Sign up

Export Citation Format

Share Document