Experimental Investigations of Oscillatory Fluctuation in an Ammonia-Water Mixture Turbine System

Author(s):  
Yoshiharu Amano ◽  
Keisuke Kawanishi ◽  
Takumi Hashizume

This paper reports results from experimental investigations of the dynamics of an ammonia-water mixture turbine system. The mixture turbine system features Kalina Cycle technology [1]. The working fluid is an ammonia-water mixture (AWM), which enhances the power production recovered from the low-temperature heat source [2], [3]. The Kalina Cycle is superior to the Rankine Cycle for a low temperature heat source [4], [5]. The ammonia-water mixture turbine system has distillation-condensation processes. The subsystem produces ammonia-rich vapor and a lean solution at the separator, and the vapor and the solution converge at the condenser. The mass balance of ammonia and water is maintained by a level control at the separator and reservoirs at the condensers. Since the ammonia mass fraction in the cycle has a high sensitivity to the evaporation/condensation pressure and vapor flow rate in the cycle, the pressure change gives rise to a flow rate change and then level changes in the separators and reservoirs and vice versa. From the experimental investigation of the ammonia-water mixture turbine system, it was observed that the sensitivity of the evaporating flow rate and solution liquid density in the cycle is very high, and those sensitivity factors are affected by the ammonia-mass fraction. This paper presents the experimental results of a study on the dynamics of the distillation process of the ammonia-water mixture turbine system and uses the results of investigation to explain the mechanism of the unstable fluctuation in the system.


2019 ◽  
Vol 27 (02) ◽  
pp. 1950012 ◽  
Author(s):  
Zeynab Seyfouri ◽  
Mehran Ameri ◽  
Mozaffar Ali Mehrabian

In the present study, a totally heat-driven refrigeration system is proposed and thermodynamically analyzed. This system uses a low-temperature heat source such as geothermal energy or solar energy to produce cooling at freezing temperatures. The proposed system comprises a Rankine cycle (RC) and a hybrid GAX (HGAX) refrigeration cycle, in which the RC provides the power requirement of the HGAX cycle. An ammonia–water mixture is used in both RC and HGAX cycles as the working fluid. A comparative study is conducted in which the proposed system is compared with two other systems using GAX cycle and/or a single stage cycle, as the refrigeration cycle. The study shows that the proposed system is preferred to produce cooling at temperatures from 2∘C to [Formula: see text]C. A detailed parametric analysis of the proposed system is carried out. The results of the analysis show that the system can produce cooling at [Formula: see text]C using a low-temperature heat source at 133.5∘C with the exergy efficiency of about 20% without any input power. By increasing the heat source temperature to 160∘C, an exergy efficiency of 25% can be achieved.



Author(s):  
Keisuke Takeshita ◽  
Kouji Morimoto ◽  
Yoshiharu Amano ◽  
Takumi Hashizume

This paper presents an experimental investigation of the effectiveness of an AWM (Ammonia-Water Mixture) turbine system with low temperature heat sources. The AWM turbine system (AWMTS) features Kalina cycle technology, namely, it employs an ammonia-water mixture as the working fluid and includes a separation / absorption process of NH3-H2O. Since AWM is a non-azeotropic mixture, its temperature changes during evaporation and condensation. This behavior gives AWMTS the advantage of heat recovery from a sensible heat source such as exhaust gas. It is known that an AWMTS can generate more power than a Rankine cycle system from 250–650°C sensible heat sources. The authors constructed a 70 KW-experimental facility and investigated the practical applications of AWMTS. It is located at the bottoming stage below a conventional combined cycle composed of a gas turbine and a steam turbine. Its heat source is the exhaust steam from a back pressure steam turbine at the middle stage of the system. The experiment was carried out with changing the back pressure of the steam turbine. The experimental results show that power generation is possible from 138 to 162 °C heat source steam.



2004 ◽  
Vol 2004.3 (0) ◽  
pp. 277-278
Author(s):  
Keisuke TAKESHITA ◽  
Koji MORIMOTO ◽  
Yoshiharu AMANO ◽  
Takumi HASHIZUME


Author(s):  
Ziyang Cheng ◽  
Yaxiong Wang ◽  
Qingxuan Sun ◽  
Jiangfeng Wang ◽  
Pan Zhao ◽  
...  

Abstract This paper proposes a novel cogeneration system based on Kalina cycle and absorption refrigeration system to meet the design requirements of China State Shipbuilding Corporation, which is efficiently satisfy the power and cooling demands of a maritime ship at the same time. Unlike most of the combined systems, this cogeneration system is highly coupled and realizes cogeneration without increasing the system complexity too much. The basic ammonia mass fraction of this novel system is increased, so that the ammonia concentration of ammonia-water steam from the separator can be higher, which contributes to lower refrigerating temperature and thus less heat loss in the distillation process. In addition, higher ammonia concentration solution makes overheating easier, which improves the thermal efficiency. Moreover, the system has two recuperators to make further improvement of the thermal efficiency. Thermodynamic models are developed to investigate the system performance and parametric analysis is conducted to figure out the effects of including working fluid temperature at the outlet of the evaporator, working fluid temperature at superheater outlet, mass fraction of ammonia in basic solution, turbine inlet pressure, temperature of cooling water at the inlet of condensers and the refrigeration evaporation temperature on the system performance. Furthermore, the cogeneration system is optimized with genetic algorithm to obtain the best performance, which achieves 333.00kW of net power output, 28.83 kW of cooling capacity and 21.81% of thermal efficiency. Finally, the performance of the proposed system is compared with an optimized recuperative organic Rankine cycle (ORC) system and an optimized Kalina cycle system 34 (KCS34) using the same heat source. The results show that the thermal efficiency and power output of the novel cogeneration system is 3.89% and 1.05% higher than that of the recuperative ORC system and KCS34 system respectively.



2006 ◽  
Vol 2006.3 (0) ◽  
pp. 183-184
Author(s):  
Hidehiko NODA ◽  
Takayuki MASANO ◽  
Daichi NAKANO ◽  
Satoshi KAMEI ◽  
Tomoyuki NAGAHATA ◽  
...  


2007 ◽  
Vol 2007.12 (0) ◽  
pp. 367-368
Author(s):  
Yasuyuki IKEGAMI ◽  
Hiroyuki ASOU ◽  
Takeshi YASUNAGA ◽  
Hirokazu MANDA ◽  
Junichi INADOMI


Solar Energy ◽  
2002 ◽  
Author(s):  
Gunmar Tamm ◽  
D. Yogi Goswami ◽  
Shaoguang Lu ◽  
Afif A. Hasan

A combined thermal power and cooling cycle proposed by Goswami is under intensive investigation, both theoretically and experimentally. The proposed cycle combines the Rankine and absorption refrigeration cycles, producing refrigeration while power is the primary goal. A binary ammonia-water mixture is used as the working fluid. This cycle can be used as a bottoming cycle using waste heat from a conventional power cycle or an independent cycle using low temperature sources such as geothermal and solar energy. Initial parametric studies of the cycle showed the potential for the cycle to be optimized for first or second law efficiency, as well as work or cooling output. For a solar heat source, optimization of the second law efficiency is most appropriate, since the spent heat source fluid is recycled through the solar collectors. The optimization results verified that the cycle could be optimized using the Generalized Reduced Gradient method. Theoretical results were extended to include realistic irreversibilities in the cycle, in preparation for the experimental study.



Author(s):  
D. Y. Goswami ◽  
Gunnar Tamm ◽  
Sanjay Vijayaraghavan

A new thermodynamic cycle has been developed for the simultaneous production of power and cooling from low temperature heat sources. The proposed cycle combines the Rankine and absorption refrigeration cycles, providing power and cooling in desired ratios to best suit the application. A binary mixture of ammonia and water is used as the working fluid, providing a good thermal match with the sensible heat source over a range of boiling temperatures. Due to its low boiling point, the ammonia-rich vapor expands to refrigeration temperatures while work is extracted through the turbine. Absorption condensation of the vapor back into the bulk solution occurs near ambient temperatures. The proposed cycle is suitable as a bottoming cycle using waste heat from conventional power generation systems, or can utilize low temperature solar or geothermal renewable resources. The cycle can be scaled to residential, commercial or industrial uses, providing power as the primary goal while satisfying some of the cooling requirements of the application. The cycle is under both theoretical and experimental investigations. Initial parametric studies of how the cycle performs at various operating conditions showed the potential for the cycle to be optimized. Optimization studies performed over a range of heat source and heat sink temperatures showed that the cycle could be optimized for maximum work or cooling output, or for first or second law efficiencies. Depending on the heat source temperatures, as much as half of the output may be obtained as refrigeration under optimized conditions, with refrigeration temperatures as low as 205 K being achievable. Maximum second law efficiencies over 60% have been found with the heat source between 350 and 450 K. An experimental system was constructed to verify the theoretical results and to demonstrate the feasibility of the cycle. The investigation focused on the vapor generation and absorption processes, setting up for the power and refrigeration studies to come later. The turbine was simulated with an equivalent expansion process in this initial phase of testing. Results showed that the vapor generation and absorption processes work experimentally, over a range of operating conditions and in simulating the sources and sinks of interest. The potential for combined work and cooling output was evidenced in operating the system. Comparison to ideally simulated results verified that there are thermal and flow losses present, which were assessed to make both improvements in the experimental system and modifications in the simulations to include realistic losses.



2005 ◽  
Vol 2005.10 (0) ◽  
pp. 201-202
Author(s):  
Yasuyuki IKEGAMI ◽  
Takeshi YASUNAGA ◽  
Haruo UEHARA


2006 ◽  
Vol 2006 (0) ◽  
pp. 71-72
Author(s):  
Yasuyuki IKEGAMI ◽  
Hiroyuki ASOU ◽  
Takeshi YASUNAGA ◽  
Hirokazu MANDA ◽  
Kaori KUBO


Sign in / Sign up

Export Citation Format

Share Document