4621 Saturation Characteristics of a Working Fluid for a Absorption Refrigerator driven by a Low Temperature Heat Source

2006 ◽  
Vol 2006.3 (0) ◽  
pp. 183-184
Author(s):  
Hidehiko NODA ◽  
Takayuki MASANO ◽  
Daichi NAKANO ◽  
Satoshi KAMEI ◽  
Tomoyuki NAGAHATA ◽  
...  
2019 ◽  
Vol 27 (02) ◽  
pp. 1950012 ◽  
Author(s):  
Zeynab Seyfouri ◽  
Mehran Ameri ◽  
Mozaffar Ali Mehrabian

In the present study, a totally heat-driven refrigeration system is proposed and thermodynamically analyzed. This system uses a low-temperature heat source such as geothermal energy or solar energy to produce cooling at freezing temperatures. The proposed system comprises a Rankine cycle (RC) and a hybrid GAX (HGAX) refrigeration cycle, in which the RC provides the power requirement of the HGAX cycle. An ammonia–water mixture is used in both RC and HGAX cycles as the working fluid. A comparative study is conducted in which the proposed system is compared with two other systems using GAX cycle and/or a single stage cycle, as the refrigeration cycle. The study shows that the proposed system is preferred to produce cooling at temperatures from 2∘C to [Formula: see text]C. A detailed parametric analysis of the proposed system is carried out. The results of the analysis show that the system can produce cooling at [Formula: see text]C using a low-temperature heat source at 133.5∘C with the exergy efficiency of about 20% without any input power. By increasing the heat source temperature to 160∘C, an exergy efficiency of 25% can be achieved.


Author(s):  
D. Y. Goswami ◽  
Gunnar Tamm ◽  
Sanjay Vijayaraghavan

A new thermodynamic cycle has been developed for the simultaneous production of power and cooling from low temperature heat sources. The proposed cycle combines the Rankine and absorption refrigeration cycles, providing power and cooling in desired ratios to best suit the application. A binary mixture of ammonia and water is used as the working fluid, providing a good thermal match with the sensible heat source over a range of boiling temperatures. Due to its low boiling point, the ammonia-rich vapor expands to refrigeration temperatures while work is extracted through the turbine. Absorption condensation of the vapor back into the bulk solution occurs near ambient temperatures. The proposed cycle is suitable as a bottoming cycle using waste heat from conventional power generation systems, or can utilize low temperature solar or geothermal renewable resources. The cycle can be scaled to residential, commercial or industrial uses, providing power as the primary goal while satisfying some of the cooling requirements of the application. The cycle is under both theoretical and experimental investigations. Initial parametric studies of how the cycle performs at various operating conditions showed the potential for the cycle to be optimized. Optimization studies performed over a range of heat source and heat sink temperatures showed that the cycle could be optimized for maximum work or cooling output, or for first or second law efficiencies. Depending on the heat source temperatures, as much as half of the output may be obtained as refrigeration under optimized conditions, with refrigeration temperatures as low as 205 K being achievable. Maximum second law efficiencies over 60% have been found with the heat source between 350 and 450 K. An experimental system was constructed to verify the theoretical results and to demonstrate the feasibility of the cycle. The investigation focused on the vapor generation and absorption processes, setting up for the power and refrigeration studies to come later. The turbine was simulated with an equivalent expansion process in this initial phase of testing. Results showed that the vapor generation and absorption processes work experimentally, over a range of operating conditions and in simulating the sources and sinks of interest. The potential for combined work and cooling output was evidenced in operating the system. Comparison to ideally simulated results verified that there are thermal and flow losses present, which were assessed to make both improvements in the experimental system and modifications in the simulations to include realistic losses.


Author(s):  
Hidehiko Noda ◽  
Takayuki Masano ◽  
Akira Yamada ◽  
Masanari Kudo ◽  
Sankichi Takahashi ◽  
...  

Author(s):  
Yoshiharu Amano ◽  
Keisuke Kawanishi ◽  
Takumi Hashizume

This paper reports results from experimental investigations of the dynamics of an ammonia-water mixture turbine system. The mixture turbine system features Kalina Cycle technology [1]. The working fluid is an ammonia-water mixture (AWM), which enhances the power production recovered from the low-temperature heat source [2], [3]. The Kalina Cycle is superior to the Rankine Cycle for a low temperature heat source [4], [5]. The ammonia-water mixture turbine system has distillation-condensation processes. The subsystem produces ammonia-rich vapor and a lean solution at the separator, and the vapor and the solution converge at the condenser. The mass balance of ammonia and water is maintained by a level control at the separator and reservoirs at the condensers. Since the ammonia mass fraction in the cycle has a high sensitivity to the evaporation/condensation pressure and vapor flow rate in the cycle, the pressure change gives rise to a flow rate change and then level changes in the separators and reservoirs and vice versa. From the experimental investigation of the ammonia-water mixture turbine system, it was observed that the sensitivity of the evaporating flow rate and solution liquid density in the cycle is very high, and those sensitivity factors are affected by the ammonia-mass fraction. This paper presents the experimental results of a study on the dynamics of the distillation process of the ammonia-water mixture turbine system and uses the results of investigation to explain the mechanism of the unstable fluctuation in the system.


2019 ◽  
Vol 14 (4) ◽  
pp. 500-507
Author(s):  
Lili Wei ◽  
Zhenjun Ma ◽  
Xuemei Gong ◽  
Xiujuan Guo

Abstract This paper presents experimental investigation of low-temperature heat to electricity generation system based on Organic Rankine Cycle (ORC) using R152a as the working fluid. Both energy efficiency and exergy efficiency were analyzed based on the experiments. Although energy efficiency was low to 5.0% when the evaporating and cooling temperatures were 65°C and 11°C, respectively, the exergy efficiency reached 25%, which showed great competitiveness among low-temperature heat utilization technologies. To reveal the energy recovery proportion from the waste heat, both energy extraction efficiency and exergy extraction efficiency as well as energy and exergy loss paths were analyzed. When the heat source was 65°C, 14.9% of the maximum possible thermal energy in the heat source was absorbed by the organic working fluid, and 10.7% was transferred to the cooling medium. The power output contributed 0.64%. A total of 1.8% of the exergy in the heat stream flowed to the cooling medium. The start-up work takes dramatically 0.16% and 1.7% of energy and exergy, respectively. Other energy and exergy loss occurs due to the irreversibility of the heat transfer process and expansion process. Cascade ORC system could enlarge the temperature difference of the heat stream and raise the power output. However, the energy efficiency of the multi-stage ORC system is lower than single-stage system, since there was a downward trend of the temperature of heat source for the latter stage. ORC cycle can lower the temperature of heat source to 45°C.


2021 ◽  
Vol 238 ◽  
pp. 01002
Author(s):  
Diego Micheli ◽  
Mauro Reini ◽  
Rodolfo Taccani

The aim of the paper is to study the thermodynamic behavior of a non-conventional power cycle, named Carbon Carrier Cycle (CCC), which is expected to obtain interesting performance with low temperature heat source. The CCC may be regarded as derived from an absorption machine, where an expander replaces the condenser, the throttling valve and the evaporator. The working fluid is a mixture of CO2 and a proper absorber. In the paper, the thermodynamic model of this kind of cycles is described, and the results obtained considering Acetone as the absorber are discussed. A first performance comparison is then conducted with a more conventional Organic Rankine Cycle (ORC).


2016 ◽  
Vol 831 ◽  
pp. 270-277
Author(s):  
Dariusz Mikielewicz ◽  
Jan Wajs ◽  
Michał Bajor ◽  
Elżbieta Żmuda

In the paper presented is a concept to utilize waste heat from the power plant with the aid of the low-temperature ORC cycle. The ORC system is heated from two heat sources, the first one being the flow rate of waste heat obtained from the exhaust gases. Subsequently, the working fluid in the cycle is additionally heated by the condensing steam from the low pressure turbine extraction points increasing in such way the level of temperature of working fluid before turbine to 120°C. Examination of the results enables to conclude that the overall efficiency of the cycle increased from =51.958% to =52.304%. That is due to the fact that additional heat enabled to evaporate more working fluid. The total generated power increased to the value of NelRU=915.85MWe, which corresponds to about 1.5% increase in power.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


2011 ◽  
Vol 32 (3) ◽  
pp. 57-70 ◽  
Author(s):  
Dariusz Mikielewicz ◽  
Jarosław Mikielewicz

Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.


Sign in / Sign up

Export Citation Format

Share Document