Gear Condition Monitoring and Classification Using Wireless Sensor Networks

Author(s):  
Xin Xue ◽  
V. Sundararajan ◽  
Luis Gonzalez

Current research in wireless sensor networks has chiefly focused on environmental monitoring applications. Wireless sensors are emerging as viable instrumentation techniques for industrial applications because of their flexibility, non-intrusive operation, safety and their low cost, low power characteristics. We describe a prototype gear condition monitoring system incorporating wireless sensors. Measurements of strain on gear teeth, vibration and temperature were undertaken using strain gage, accelerometer, and thermistors, respectively. The sensors interface to a sensor board that is connected to a microprocessor and a radio. Gear faults diagnosis using conventional classification techniques such as principle component analysis (PCA), Fisher linear discriminant analysis (LDA) and Nearest-Neighbor Rule (NNR) is studied in this paper. Two sets of vibration data, one set of strain data, and three sets of temperature data are used to classify a running gear under normal condition and a running gear with simulated crack teeth. Feature level data fusion is used to test the classification performance of simple but less effective features to study the fusion effects. The results show high performance of strain features, high quality of the classifier and obvious fusion effect which increases the classification performance.

Author(s):  
Xin Xue ◽  
V. Sundararajan ◽  
Wallace P. Brithinee

A commonly used technique for the detection of faults in large three-phase induction motors is to measure the supply current to the motor and analyze the signal spectrum. This technique is well established and has been shown to be indicative of a faulty condition. However, current signature analysis is usually used by very skilled technicians using expensive equipment. A cost effective condition monitoring technique is needed for smaller motors (those smaller than 200 HP). A motor's heat signature tells more about its quality and condition. For heavy-duty motors, it is very important to detect overheating because hot windings deteriorate rapidly. This paper explores the possibilities of using wireless sensors inside the motor. Wireless sensors are gaining popularity in condition monitoring applications because of their relatively low cost and ease of installation. This paper proposes a system of condition monitoring of the three-phase induction motor using wireless sensor networks (WSN) to measure the temperature and the vibration signals. The sensor nodes are placed on the rotor and the stator. The data acquisition is accomplished at a base station located at a distance of 6 feet. Issues related to electromagnetic interference between the wireless devices and the magnetic fields present within the motor are investigated.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1782
Author(s):  
Yulong Deng ◽  
Chong Han ◽  
Jian Guo ◽  
Lijuan Sun

Data missing is a common problem in wireless sensor networks. Currently, to ensure the performance of data processing, making imputation for the missing data is the most common method before getting into sensor data analysis. In this paper, the temporal and spatial nearest neighbor values-based missing data imputation (TSNN), a new imputation based on the temporal and spatial nearest neighbor values has been presented. First, four nearest neighbor values have been defined from the perspective of space and time dimensions as well as the geometrical and data distances, which are the bases of the algorithm that help to exploit the correlations among sensor data on the nodes with the regression tool. Next, the algorithm has been elaborated as well as two parameters, the best number of neighbors and spatial–temporal coefficient. Finally, the algorithm has been tested on an indoor and an outdoor wireless sensor network, and the result shows that TSNN is able to improve the accuracy of imputation and increase the number of cases that can be imputed effectively.


2005 ◽  
Vol 1 (2) ◽  
pp. 245-252 ◽  
Author(s):  
P. Davis ◽  
A. Hasegawa ◽  
N. Kadowaki ◽  
S. Obana

We propose a method for managing the spontaneous organization of sensor activity in ad hoc wireless sensor systems. The wireless sensors exchange messages to coordinate responses to requests for sensing data, and to control the fraction of sensors which are active. This method can be used to manage a variety of sensor activities. In particular, it can be used for reducing the power consumption by battery operated devices when only low resolution sensing is required, thus increasing their operation lifetimes.


2011 ◽  
Vol 55 (8) ◽  
pp. 1849-1863 ◽  
Author(s):  
Ali Fanian ◽  
Mehdi Berenjkoub ◽  
Hossein Saidi ◽  
T. Aaron Gulliver

Sign in / Sign up

Export Citation Format

Share Document