The Application of Wireless Sensor Networks for Fault Condition Monitoring in Three-Phase Induction Motors

Author(s):  
Xin Xue ◽  
V. Sundararajan ◽  
Wallace P. Brithinee

A commonly used technique for the detection of faults in large three-phase induction motors is to measure the supply current to the motor and analyze the signal spectrum. This technique is well established and has been shown to be indicative of a faulty condition. However, current signature analysis is usually used by very skilled technicians using expensive equipment. A cost effective condition monitoring technique is needed for smaller motors (those smaller than 200 HP). A motor's heat signature tells more about its quality and condition. For heavy-duty motors, it is very important to detect overheating because hot windings deteriorate rapidly. This paper explores the possibilities of using wireless sensors inside the motor. Wireless sensors are gaining popularity in condition monitoring applications because of their relatively low cost and ease of installation. This paper proposes a system of condition monitoring of the three-phase induction motor using wireless sensor networks (WSN) to measure the temperature and the vibration signals. The sensor nodes are placed on the rotor and the stator. The data acquisition is accomplished at a base station located at a distance of 6 feet. Issues related to electromagnetic interference between the wireless devices and the magnetic fields present within the motor are investigated.

Author(s):  
Xin Xue ◽  
V. Sundararajan ◽  
Luis Gonzalez

Current research in wireless sensor networks has chiefly focused on environmental monitoring applications. Wireless sensors are emerging as viable instrumentation techniques for industrial applications because of their flexibility, non-intrusive operation, safety and their low cost, low power characteristics. We describe a prototype gear condition monitoring system incorporating wireless sensors. Measurements of strain on gear teeth, vibration and temperature were undertaken using strain gage, accelerometer, and thermistors, respectively. The sensors interface to a sensor board that is connected to a microprocessor and a radio. Gear faults diagnosis using conventional classification techniques such as principle component analysis (PCA), Fisher linear discriminant analysis (LDA) and Nearest-Neighbor Rule (NNR) is studied in this paper. Two sets of vibration data, one set of strain data, and three sets of temperature data are used to classify a running gear under normal condition and a running gear with simulated crack teeth. Feature level data fusion is used to test the classification performance of simple but less effective features to study the fusion effects. The results show high performance of strain features, high quality of the classifier and obvious fusion effect which increases the classification performance.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


2016 ◽  
Vol 26 (1) ◽  
pp. 17
Author(s):  
Carlos Deyvinson Reges Bessa

ABSTRACTThis work aims to study which wireless sensor network routing protocol is more suitable for Smart Grids applications, through simulation of AODV protocols, AOMDV, DSDV and HTR in the NS2 simulation environment. Was simulated a network based on a residential area with 47 residences, with one node for each residence and one base station, located about 25m from the other nodes. Many parameters, such as packet loss, throughput, delay, jitter and energy consumption were tested.  The network was increased to 78 and 93 nodes in order to evaluate the behavior of the protocols in larger networks. The tests proved that the HTR is the routing protocol that has the best results in performance and second best in energy consumption. The DSDV had the worst performance according to the tests.Key words.- Smart grid, QoS analysis, Wireless sensor networks, Routing protocols.RESUMENEste trabajo tiene como objetivo estudiar el protocolo de enrutamiento de la red de sensores inalámbricos es más adecuado para aplicaciones de redes inteligentes, a través de la simulación de protocolos AODV, AOMDV, DSDV y HTR en el entorno de simulación NS2. Se simuló una red basada en una zona residencial con 47 residencias, con un nodo para cada residencia y una estación base, situada a unos 25 metros de los otros nodos. Muchos parámetros, tales como la pérdida de paquetes, rendimiento, retardo, jitter y el consumo de energía se probaron. La red se incrementó a 78 y 93 nodos con el fin de evaluar el comportamiento de los protocolos de redes más grandes. Las pruebas demostraron que el HTR es el protocolo de enrutamiento que tiene los mejores resultados en el rendimiento y el segundo mejor en el consumo de energía. El DSDV tuvo el peor desempeño de acuerdo a las pruebas.Palabras clave.- redes inteligentes, análisis de calidad de servicio, redes de sensores inalámbricas, protocolos de enrutamiento.


2013 ◽  
Vol 347-350 ◽  
pp. 975-979
Author(s):  
Rong Zhao ◽  
Cai Hong Li ◽  
Yun Jian Tan ◽  
Jun Shi ◽  
Fu Qiang Mu ◽  
...  

This paper presents a Debris Flow Disaster Faster-than-early Forecast System (DFS) with wireless sensor networks. Debris flows carrying saturated solid materials in water flowing downslope often cause severe damage to the lives and properties in their path. Faster-than-early or faster-than-real-time forecasts are imperative to save lives and reduce damage. This paper presents a novel multi-sensor networks for monitoring debris flows. The main idea is to let these sensors drift with the debris flow, to collect flow information as they move along, and to transmit the collected data to base stations in real time. The Raw data are sent to the cloud processing center from the base station. And the processed data and the video of the debris flow are display on the remote PC. The design of the system address many challenging issues, including cost, deployment efforts, and fast reaction.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Chin-Ling Chen ◽  
Chih-Cheng Chen ◽  
De-Kui Li

In recent years, wireless sensor network (WSN) applications have tended to transmit data hop by hop, from sensor nodes through cluster nodes to the base station. As a result, users must collect data from the base station. This study considers two different applications: hop by hop transmission of data from cluster nodes to the base station and the direct access to cluster nodes data by mobile users via mobile devices. Due to the hardware limitations of WSNs, some low-cost operations such as symmetric cryptographic algorithms and hash functions are used to implement a dynamic key management. The session key can be updated to prevent threats of attack from each communication. With these methods, the data gathered in wireless sensor networks can be more securely communicated. Moreover, the proposed scheme is analyzed and compared with related schemes. In addition, an NS2 simulation is developed in which the experimental results show that the designed communication protocol is workable.


2017 ◽  
Vol 13 (05) ◽  
pp. 122 ◽  
Author(s):  
Bo Feng ◽  
Wei Tang ◽  
Guofa Guo

In wireless sensor networks, the nodes around the base station have higher energy consumption due to the forwarding task of all the detected data. In order to balance the energy consumption of the nodes around the base station, a reasonable and effective mechanism of node rotation dormancy is put forward. In this way, a large number of redundant nodes in the network are in a dormant state, so as to reduce the load of important nodes around the base station. The problems of the redundant nodes in the sensor network are analyzed, and a new method is proposed to distinguish the redundant nodes based on local Delaunay triangulation and multi node election dormancy mechanism. The experimental results showed that this method could effectively distinguish the redundant nodes in the network; at the same time, through the multi round election mechanism, parts of redundant nodes are made dormant. In summary, they can reduce the network energy consumption on the condition of guaranteeing the original coverage.


Sign in / Sign up

Export Citation Format

Share Document