Impact of Valve Plate Design on Noise, Volumetric Efficiency and Control Effort in an Axial Piston Pump

Author(s):  
Ganesh Kumar Seeniraj ◽  
Monika Ivantysynova

In designing an axial piston pump, lot of attention is given to the design of the valve plate. A well designed valve plate can reduce both flow pulsations as well as oscillating forces on the swash plate. In the presented study, a computational tool, CASPAR, has been used for investigating the effect of valve plate design on flow ripple (fluid borne noise), oscillating forces (structure borne noise) and volumetric efficiency. The impact of various valve plate design parameters such as precompression grooves, cross port, indexing and additional precompression volume will be presented using simulation results from CASPAR. The study also details how rate of pressurization and decompression inside the displacement chamber directly relate to the flow ripple, forces applied on swash plate and the control effort needed to stroke the swash plate. The effect of noise reduction techniques on volumetric efficiency will also be presented with simulated results.

2000 ◽  
Vol 123 (3) ◽  
pp. 479-487 ◽  
Author(s):  
Noah D. Manring ◽  
Yihong Zhang

In this research, the volumetric efficiency of the axial-piston pump is examined as it relates to the compressibility losses of the fluid. In particular, two valve-plate geometries are compared to show that alterations in the valve-plate design can cause differences in the operating efficiency of the pump. In this paper, a standard valve-plate design which utilizes slots is compared to a trapped-volume design which eliminates the slots altogether. In the analytical result of this paper, it may be shown that the standard valve-plate design introduces a volumetric loss which may be accounted for by the uncontrolled expansion and compression of the fluid that occurs through the slots themselves. By eliminating these slots, and utilizing a trapped volume design, it may be shown that improvements in the operating efficiency can be achieved. Though this paper does not claim to provide the ideal valve-plate design for all pump applications, it does provide the theoretical reason for utilizing trapped volumes and lends general insight into the overall problem of valve-plate design.


2000 ◽  
Author(s):  
N. D. Manring ◽  
Y. Zhang

Abstract In this research, the volumetric efficiency of the axial-piston pump is examined as it relates to the compressibility losses of the fluid. In particular, two valve-plate geometries are compared to show that alterations in the valve-plate design can cause differences in the operating efficiency of the pump. In this paper, a standard valve-plate design which utilizes slots is compared to a trapped-volume design which eliminates the slots altogether. In the analytical result of this paper, it maybe shown that the standard valve-plate design introduces a volumetric loss which may be accounted for by the uncontrolled expansion and compression of the fluid that occurs through the slots themselves. By eliminating these slots, and utilizing a trapped volume design, it may be shown that improvements in the operating efficiency can be achieved. Though this paper does not claim to provide the ideal valve-plate design for all pump applications, it does provide the theoretical reason for utilizing trapped volumes and lends general insight into the overall problem of valve-plate design.


Author(s):  
Gianluca Marinaro ◽  
Emma Frosina ◽  
Kim Stelson ◽  
Adolfo Senatore

Abstract This research presents a lumped parameter numerical model aimed at designing and optimizing an axial piston pump. For the first time, it has been shown that a lumped parameter model can accurately model axial piston pump dynamics based on a comparison with CFD models and experimental results. Since the method is much more efficient than CFD, it can optimize the design. Both steady-state and dynamic behaviors have been analyzed. The model results have been compared with experimental data, showing a good capacity in predicting the pump performance, including pressure ripple. The swashplate dynamics have been investigated experimentally, measuring the dynamic pressure which controls the pump displacement; a comparison with the numerical model results confirmed the high accuracy. An optimization process has been conducted on the valve plate geometry to control fluid-born noise by flow ripple reduction. The NLPQL algorithm is used since it is suitable for this study. The objective function to minimize is the well-known function, the Non-Uniformity Grade, a parameter directly correlated with flow ripple. A prototype of the best design has been realized and tested, confirming a reduction in the pressure ripple. An endurance test was also conducted. As predicted from the numerical model, a significant reduction of cavitation erosion was observed.


Author(s):  
San Seong Lee ◽  
◽  
Won Jee Chung ◽  
Dong Jae Lim ◽  
Tae Hyung Cha ◽  
...  

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Wei He ◽  
Jia-Hai Huang ◽  
Hui-Min Hao ◽  
Long Quan ◽  
Shuai-xu Ji ◽  
...  

Abstract Based on the previously developed fixed-displacement asymmetric axial piston pump, a variable displacement asymmetric axial piston pump (VDAAPP) with three independent suction/delivery ports is proposed. A basic linear model of VDAAPP is established to get open-loop bode diagram. Based on open-loop Bode diagram features and design requirements, P-controller is determined for VDAAPP. Then VDAAPP's performance is investigated by advanced modeling environment for performing simulations of engineering systems (AMESim) and automatic dynamic analysis of mechanical systems (ADAMS) joint simulation, and some key design parameters are obtained. Next, a VDAAPP prototype with a maximum displacement of 40 cc/rev is designed and manufactured, ratio of flow rates at ports A, B and T is 1:0.6:0.4. Due to hard limitations of the test bench, the performance only under the conditions of the opposite passive loads is tested. Preliminary test results indicate that VDAAPP prototype works normally and meets the design requirements for flow ratio, and the maximum rise time of the test pressure is about 0.32 s. However, due to special design of VDAAPP valve plate, the swash plate torque severely limits system dynamic response. Therefore, an improved swashplate control system based on asymmetric-valve-controlled asymmetric-piston scheme is presented as well, it is found to be an effective way to suppress the negative impact of swash plate torque on system dynamic performance. This provides a direction for the optimization of the swashplate control system for asymmetric axial piston pumps in the future.


Author(s):  
Yang Pan ◽  
Yibo Li ◽  
Dedong Liang

The vibration of a swash plate is caused by the piston forces and the control actuator acting on the swash plate. An earlier study of the outlet flow ripple of variable-displacement axial piston pumps assumed a fixed swash plate angle; it ignored the influence of swash plate vibration on the outlet flow ripple of the axial piston pump. In this work, a theoretical model of the outlet flow ripple and pressure pulsation was established in a constant power variable-displacement piston pump. The vibration of swash plate, flow leakage, and valve dynamic characteristics are considered in the theoretical model. The computational results of the theoretical model at different external load pressures are verified by comparison with experimental results. The vibration of the swash plate is strongly influenced by both the piston chamber pressure variation and the control actuator mechanism. The study proved the influence of the swash plate vibration on the outlet flow ripple and the pressure pulsation of an axial piston pump. Compared to the case of a fixed swash plate angle, accounting for swash plate vibration is much more suitable for the accurate determination of the outlet flow ripple and pressure pulsation of an axial piston pump. It is also shown that the vibration of the swash plate affects the valve plate design. Accordingly, valve plate optimization based on the theoretical model of the outlet flow ripple was also studied in this work. The amplitude of the instantaneous outlet flow ripple was considered as the optimization objective function. Finally, the optimized design parameters for a constant power variable-displacement swash plate axial piston pump were evaluated.


Author(s):  
Zhaoqiang Wang ◽  
Yanfei Xu ◽  
Shan Hu ◽  
Hong Ji ◽  
Jian Yang

When a swash plate axial piston pump operates under high-pressure conditions, the valve plate will undergo warping deformation. Based on the theory of elastic fluid dynamic lubrication, this work establishes a fluid–solid coupling model of a swash plate axial piston pump and solves the governing equations of the lubrication with respect to the port plate pair. Cylinder speed, cylinder angle, fluid viscosity, oil film thickness, seal belt width, and structural parameters are also considered to observe their influence on the valve plate warpage deformation with the swash plate axial piston pump. The results show that the deformation cloud of the valve plate on the axial piston pump is symmetrical, with the axis line of the waist groove as the axis. The deformation of the outer seal zone on the high-pressure side of the valve plate is the largest, and the deformation of the outer seal zone on the low-pressure side of the valve plate is the smallest. Under the same conditions, the material and structure of the valve plate affect the thickness and shape of the oil film. This study provides a theoretical basis for the high pressure of the swash plate axial piston pump.


Sign in / Sign up

Export Citation Format

Share Document