Setting Performance Targets Based on Subsystem Pareto Frontiers in Multilevel Optimization

Author(s):  
Huibin Liu ◽  
Christopher Hoyle ◽  
Xiaolei Yin ◽  
Wei Chen

The design of a complex engineering system typically involves tradeoffs among multiple design criteria or disciplinary performance to achieve the optimal design. The design process is usually an iterative procedure with individual discipline sub-systems designed concurrently to meet target values assigned from the system level. One of the most challenging issues is the large number of iterations in this design process, especially when uncertainty is taken into account. To improve the design concurrency while maintaining preferred tradeoffs at the system level, a new method is developed that identifies proper targets based on disciplinary design capability information while optimizing the design goal at the system level. The design capability of a discipline or criterion is represented by the achievable area bounded by its Pareto frontier. Using target values obtained from this method using Pareto information, the number of design iterations can be reduced in both deterministic and probabilistic design scenarios compared to existing approaches, such as Analytical Target Cascading (ATC). To demonstrate applications and benefits of the developed method this approach is applied to the design of a two-bar truss structure.

2010 ◽  
Vol 143-144 ◽  
pp. 1445-1449
Author(s):  
Ming Hong Han

Collaborative optimization (CO) is the most widely used Multidisciplinary design optimization (MDO) method for the design of complex engineering system. But some serious computational difficulties are found in its application. Reasons that cause computational difficulties in original CO were analyzed and a new improved collaborative optimization method (ICO) was presented. The L1 norm was used to improve subsystem consistency constraint and to avoid discontinuities in subsystem object function derivatives. Penalty function was added to system-level object function to convert constrained optimization into unconstrained optimization. A quick-start strategy was used to make the best use of optimal solution of system-level optimization in subsystem-level optimization. Experimental results show that the robustness, reliability and computing efficiency of ICO are higher than CO.


2001 ◽  
Author(s):  
D. Geoff Rideout ◽  
Jeffrey L. Stein ◽  
John B. Ferris

Abstract Vehicle dynamics are well understood by both academic researchers and automotive industries. And while modeling and simulation tools are still underutilized, they are becoming more frequently used in the vehicle design process. However, there is still lacking an overall design methodology that can link and integrate in a systematic fashion the design tasks of individual components or systems such that the vehicle performs as intended with a minimal number of design iterations. A process called Target Cascading, applied in the early stages of vehicle design, might serve as this systematic design methodology. In this paper, Target Cascading is evaluated for its ability to propagate top-level design specifications down to specifications for various subsystems and components in a vehicle design problem. More specifically, general ride and handling targets are set for a vehicle and these are cascaded down through the suspension, tire pressure and spring design levels by partitioning the original problem into a hierarchical set of subproblems. At a given level, an optimization problem is formulated to minimize deviations from the proposed targets and thus achieve intersystem compatibility. A coordination strategy links all subproblem decisions so that the overall supersystem performance targets are met. Results are presented that demonstrate Target Cascading’s utility in unearthing tradeoffs and incompatibilities among initial targets early in the vehicle development cycle. Throughout the paper, the Target Cascading process is compared to traditional vehicle design strategies for achieving ride and handling targets. Target Cascading appears to be a promising systematic technique for the design of vehicles to meet ride and handling specifications.


Author(s):  
Lukman Irshad ◽  
H. Onan Demirel ◽  
Irem Y. Tumer ◽  
Guillaume Brat

Abstract While a majority of system vulnerabilities such as performance losses and accidents are attributed to human errors, a closer inspection would reveal that often times the accumulation of unforeseen events that include both component failures and human errors contribute to such system failures. Human error and functional failure reasoning (HEFFR) is a framework to identify potential human errors, functional failures, and their propagation paths early in design so that systems can be designed to be less prone to vulnerabilities. In this paper, the application of HEFFR within the complex engineering system domain is demonstrated through the modeling of the Air France 447 crash. Then, the failure prediction algorithm is validated by comparing the outputs from HEFFR and what happened in the actual crash. Also, two additional fault scenarios are executed within HEFFR and in a commercially available flight simulator separately, and the outcomes are compared as a supplementary validation.


Author(s):  
Kurt Hacker ◽  
Kemper Lewis

Abstract In this paper we introduce a methodology to reduce the effects of uncertainty in the design of a complex engineering system involving multiple decision makers. We focus on the uncertainty that is created when a disciplinary designer or design team must try and predict or model the behavior of other disciplinary subsystems. The design of a complex system is performed by many different designers and teams, each of which only have control over a small portion of the entire system. Modeling the interaction among these decision makers and reducing the uncertainty caused by the lack of global control is the focus of this paper. We use well developed concepts from the field of game theory to describe the interactions taking place, and concepts from robust design to reduce the effects of one decision-maker on another. Response Surface Methodology (RSM) is also used to reduce the complexity of the interaction analysis while preserving behavior of the systems. The design of a passenger aircraft is used to illustrate the approach, and some encouraging results are discussed.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 310
Author(s):  
Jinxin Wang ◽  
Zhongwei Wang ◽  
Xiuzhen Ma ◽  
Guojin Feng ◽  
Chi Zhang

Fault diagnostics aims to locate the origin of an abnormity if it presents and therefore maximize the system performance during its full life-cycle. Many studies have been devoted to the feature extraction and isolation mechanisms of various faults. However, limited efforts have been spent on the optimization of sensor location in a complex engineering system, which is expected to be a critical step for the successful application of fault diagnostics. In this paper, a novel sensor location approach is proposed for the purpose of fault isolation using population-based incremental learning (PBIL). A directed graph is used to model the fault propagation of a complex engineering system. The multidimensional causal relationships of faults and symptoms were obtained via traversing the directed path in the directed graph. To locate the minimal quantity of sensors for desired fault isolatability, the problem of sensor location was firstly formulated as an optimization problem and then handled using PBIL. Two classical cases, including a diesel engine and a fluid catalytic cracking unit (FCCU), were taken as examples to demonstrate the effectiveness of the proposed approach. Results show that the proposed method can minimize the quantity of sensors while keeping the capacity of fault isolation unchanged.


2016 ◽  
Vol 20 (11) ◽  
Author(s):  
Andrei Markov ◽  
◽  
Galina Vinogradova ◽  
Aleksandr Denisenko ◽  
Aleksandr Khlebnikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document