Upstream Vortex Effects on Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow

Author(s):  
Zhihong Gao ◽  
Diganta Narzary ◽  
Shantanu Mhetras ◽  
Je-Chin Han

Detailed film cooling effectiveness distributions were experimentally obtained on a turbine blade platform within a five-blade linear cascade. A typical labyrinth-like seal was placed upstream of the cascade blades to simulate purge flow from a stator-rotor gap. Delta wings were periodically placed upstream of the blades to model the effect of the passage vortex generated in the vane passage on the downstream blade platform film cooling effectiveness. Typical vane passage vortex was simulated by two delta wings with height of 10% and 20% of the blade span, respectively. The strength of vane passage vortex was also modeled by varying the attack angle of mainstream to the delta wing. The film cooling effectiveness was measured with the delta wings placed at four phase locations, to investigate the effect of the passing vanes. The detailed film cooling effectiveness distributions on the platform were obtained using pressure sensitive paint (PSP) technique. The coolant mass flow rate varied from 0.25% to 1.0% of the mainstream flow. The freestream Reynolds number, based on the axial chord length and the exit velocity, was 750,000. The Mach numbers at the inlet and the exit were 0.27 and 0.44, respectively. The vortex generated by the delta wings had a profound impact on the platform film cooling effectiveness. The upstream vortex created more turbulent mixing within the blade passage and resulted in reduced film cooling effectiveness on the blade platform.

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Lesley M. Wright ◽  
Sarah A. Blake ◽  
Dong-Ho Rhee ◽  
Je-Chin Han

Detailed film cooling effectiveness distributions were experimentally obtained on a turbine blade platform within a linear cascade. The film cooling effectiveness distributions were obtained on the platform with upstream disturbances used to simulate the passing vanes. Cylindrical rods, placed upstream of the blades, simulated the wake created by the trailing edge of the stator vanes. The rods were placed at four locations to show how the film cooling effectiveness was affected relative to the vane location. In addition, delta wings were placed upstream of the blades to model the effect of the passage vortex (generated in the vane passage) on the platform film cooling effectiveness. The delta wings create a vortex similar to the passage vortex as it exits the upstream vane passage. The film cooling effectiveness was measured with the delta wings placed at four location, to investigate the effect of the passing vanes. Finally, the delta wings were coupled with the cylindrical rods to examine the combined effect of the upstream wake and passage vortex on the platform film cooling effectiveness. The detailed film cooling effectiveness distributions were obtained using pressure sensitive paint in the five blade linear cascade. An advanced labyrinth seal was placed upstream of the blades to simulate purge flow from a stator-rotor seal. The coolant flow rate varied from 0.5% to 2.0% of the mainstream flow, while the Reynolds number of the mainstream flow remained constant at 3.1×105 (based on the inlet velocity and chord length of the blade). The film cooling effectiveness was not significantly affected with the upstream rod. However, the vortex generated by the delta wings had a profound impact on the film cooling effectiveness. The vortex created more turbulent mixing within the blade passage, and the result is reduced film cooling effectiveness through the entire passage. When the vane induced secondary flow is included, the need for additional platform cooling becomes very obvious.


Author(s):  
Lesley M. Wright ◽  
Sarah A. Blake ◽  
Dong-Ho Rhee ◽  
Je-Chin Han

Detailed film cooling effectiveness distributions were experimentally obtained on a turbine blade platform within a linear cascade. The film cooling effectiveness distributions were obtained on the platform with upstream disturbances used to simulate the passing vanes. Cylindrical rods, placed upstream of the blades, simulated the wake created by the trailing edge of the stator vanes. The rods were placed at 4 locations to show how the film cooling effectiveness was affected relative to the vane location. In addition, delta wings were placed upstream of the blades to model the effect of the passage vortex (generated in the vane passage) on the platform film cooling effectiveness. The delta wings create a vortex similar to the passage vortex as it exits the upstream vane passage. The film cooling effectiveness was measured with the delta wings placed at 4 locations, to investigate the effect of the passing vanes. Finally, the delta wings were coupled with the cylindrical rods to examine the combined effect of the upstream wake and passage vortex on the platform film cooling effectiveness. The detailed film cooling effectiveness distributions were obtained using pressure sensitive paint (PSP) in the five blade linear cascade. An advanced labyrinth seal was placed upstream of the blades to simulate purge flow from a statorrotor seal. The coolant flow rate varied from 0.5% to 2.0% of the mainstream flow, while the Reynolds number of the mainstream flow remained constant at 3.1*105 (based on the inlet velocity and chord length of the blade). The film cooling effectiveness was not significantly affected with the upstream rod. However, the vortex generated by the delta wings had a profound impact on the film cooling effectiveness. The vortex created more turbulent mixing within the blade passage, and the result is reduced film cooling effectiveness through the entire passage. When the vane induced secondary flow is included, the need for additional platform cooling becomes very obvious.


Author(s):  
Diganta P. Narzary ◽  
Kuo-Chun Liu ◽  
Je-Chin Han

Detailed parametric study of film-cooling effectiveness was carried out on a turbine blade platform of a five-blade linear cascade. The parameters chosen were freestream turbulence intensity, upstream stator-rotor purge flow rate, discrete-hole film-cooling blowing ratio, and coolant-to-mainstream density ratio. The measurement technique adopted was temperature sensitive paint (TSP) technique. Two turbulence intensities of 4.2% and 10.5%; three purge flows between the range of 0.25% and 0.75% of mainstream flow rate; three blowing ratios between 1.0 and 1.8; and three density ratios between 1.1 and 2.2 were investigated. Purge flow was supplied via a typical double-toothed stator-rotor seal, whereas the discrete-hole film-cooling was accomplished via two rows of cylindrical holes arranged along the length of the platform. The inlet and the exit Mach numbers were 0.27 and 0.44, respectively. Reynolds number of the mainstream flow was 7.5 * 105 based on the exit velocity and chord length of the blade. Results indicated that platform film-cooling effectiveness decreased with turbulence intensity, increased with purge flow rate and density ratio, and possessed an optimum blowing ratio value.


Author(s):  
Lesley M. Wright ◽  
Sarah A. Blake ◽  
Je-Chin Han

An experimental investigation has been completed to obtain detailed film cooling effectiveness distributions on a cooled turbine blade platform within a linear cascade. The platform has a labyrinth-like seal upstream of the blades to model a realistic stator-rotor seal configuration. Additional coolant is supplied to the downstream half of the platform via discrete film cooling holes. The coolant flow rate through the upstream seal varies from 0.5% to 2.0% of the mainstream flow, while the blowing ratio of the coolant through the discrete holes varies from 0.5 to 2.0 (based on the mainstream velocity at the exit of the cascade). Detailed film cooling effectiveness distributions are obtained using the pressure sensitive paint (PSP) technique under a wide range of coolant flow conditions and various freestream turbulence levels (0.75% or 13.4%). The PSP technique clearly shows how adversely the coolant is affected by the passage induced flow. With only purge flow from the upstream seal, the coolant flow rate must exceed 1.5% of the mainstream flow in order to adequately cover the entire passage. However, if discrete film holes are used on the downstream half of the passage, the platform can be protected while using less coolant (i.e. the seal flow rate can be reduced).


2008 ◽  
Vol 130 (7) ◽  
Author(s):  
Lesley M. Wright ◽  
Zhihong Gao ◽  
Huitao Yang ◽  
Je-Chin Han

A five-blade, linear cascade is used to experimentally investigate turbine blade platform cooling. A 30deg inclined slot upstream of the blades is used to model the seal between the stator and rotor, and 12 discrete film holes are located on the downstream half of the platform for additional cooling. The film cooling effectiveness is measured on the platform using pressure sensitive paint (PSP). Using PSP, it is clear that the film cooling effectiveness on the blade platform is strongly influenced by the platform secondary flow through the passage. Increasing the slot injection rate weakens the secondary flow and provides more uniform film coverage. Increasing the freestream turbulence level was shown to increase film cooling effectiveness on the endwall, as the increased turbulence also weakens the passage vortex. However, downstream, near the discrete film cooling holes, the increased turbulence decreases the film cooling effectiveness. Finally, combining upstream slot flow with downstream discrete film holes should be cautiously done to ensure coolant is not wasted by overcooling regions on the platform.


Author(s):  
Diganta P. Narzary ◽  
Kuo-Chun Liu ◽  
Je-Chin Han

Detailed parametric study of film-cooling effectiveness was carried out on a turbine blade platform of a five-blade linear cascade. The parameters chosen were — freestream turbulence intensity, upstream stator-rotor purge flow rate, discrete-hole film-cooling blowing ratio, and coolant-to-mainstream density ratio. The measurement technique adopted was temperature sensitive paint (TSP) technique. Two turbulence intensities of 4.2% and 10.5%; three purge flows between the range of 0.25% and 0.75% of mainstream flow rate; three blowing ratios between 1.0 and 2.0; and three density ratios between 1.1 and 2.1 were investigated. Purge flow was supplied via a typical double-toothed stator-rotor seal, whereas the discrete-hole film cooling was accomplished via two rows of cylindrical holes arranged along the length of the platform. The inlet and the exit Mach numbers were 0.27 and 0.44, respectively. Reynolds number of the mainstream flow was 7.5*105 based on the exit velocity and chord length of the blade. Results indicated that platform film-cooling effectiveness decreased with turbulence intensity, increased with purge flow rate and density ratio, and possessed an optimum blowing ratio value. The improved effectiveness with density ratio was further validated by the pressure sensitive paint (PSP) technique.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Lesley M. Wright ◽  
Sarah A. Blake ◽  
Je-Chin Han

An experimental investigation to obtain detailed film cooling effectiveness distributions on a cooled turbine blade platform within a linear cascade has been completed. The Reynolds number of the freestream flow is 3.1×105, and the platform has a labyrinthlike seal upstream of the blades to model a realistic stator-rotor seal configuration. An additional coolant is supplied to the downstream half of the platform via discrete film cooling holes. The coolant flow rate through the upstream seal varies from 0.5% to 2.0% of the mainstream flow, while the blowing ratio of the coolant through the discrete holes varies from 0.5 to 2.0 (based on the mainstream velocity at the exit of the cascade). Detailed film cooling effectiveness distributions are obtained using the pressure sensitive paint (PSP) technique under a wide range of coolant flow conditions and various freestream turbulence levels (0.75% or 13.4%). The PSP technique clearly shows how adversely the coolant is affected by the passage induced flow. With only purge flow from the upstream seal, the coolant flow rate must exceed 1.5% of the mainstream flow in order to adequately cover the entire passage. However, if discrete film holes are used on the downstream half of the passage, the platform can be protected while using less coolant (i.e., the seal flow rate can be reduced).


Author(s):  
A. Suryanarayanan ◽  
B. Ozturk ◽  
M. T. Schobeiri ◽  
J. C. Han

Film cooling effectiveness is measured on a rotating turbine blade platform for coolant injection through discrete holes using pressure sensitive paint technique (PSP). Most of the existing literatures provide information only for stationary end-walls. The effects of rotation on the platform film cooling effectiveness are not well documented. Hence, the existing 3-stage turbine research facility at TPFL, Texas A&M University was re-designed and installed to enable coolant gas injection on the 1st stage rotor platform. Two distinct coolant supply loops were incorporated into the rotor to facilitate separate feeds for upstream cooling using stator-rotor gap purge flow and downstream discrete-hole film cooling. As a continuation of the previously published work involving stator-rotor gap purge cooling, this study investigates film cooling effectiveness on the 1st stage rotor platform due to coolant gas injection through nine discrete holes located downstream within the passage region. Film cooling effectiveness is measured for turbine rotor frequencies of 2400rpm, 2550rpm and 3000rpm corresponding to rotation numbers of Ro = 0.18, 0.19 and 0.23 respectively. For each of the turbine rotational frequencies, film cooling effectiveness is determined for average film-hole blowing ratios of Mholes = 0.5, 0.75, 1.0, 1.25, 1.5 and 2.0. To provide a complete picture of hub cooling under rotating conditions, simultaneous injection of coolant gas through upstream stator-rotor purge gap and downstream discrete film-hole is also studied. The combined tests are conducted for gap purge flow corresponding to coolant to mainstream mass flow ratio of MFR = 1% with three downstream film-hole blowing ratios of Mholes = 0.75, 1.0 and 1.25 for each of the three turbine speeds. The results for combined upstream stator-rotor gap purge flow and downstream discrete holes provide information about the optimum purge flow coolant mass, average coolant hole blowing ratios for each rotational speed and coolant injection location along the passage to obtain efficient platform film cooling.


Author(s):  
Andrew F. Chen ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

The combined effects of inlet purge flow and the slashface leakage flow on the film cooling effectiveness of a turbine blade platform were studied using the pressure sensitive paint (PSP) technique. Detailed film cooling effectiveness distributions on the endwall were obtained and analyzed. The inlet purge flow was generated by a row of equally-spaced cylindrical injection holes inside a single-tooth generic stator-rotor seal. In addition to the traditional 90 degree (radial outward) injection for the inlet purge flow, injection at a 45 degree angle was adopted to create a circumferential/azimuthal velocity component toward the suction side of the blades, which created a swirl ratio (SR) of 0.6. Discrete cylindrical film cooling holes were arranged to achieve an improved coverage on the endwall. Backward injection was attempted by placing backward injection holes near the pressure side leading edge portion. Slashface leakage flow was simulated by equally-spaced cylindrical injection holes inside a slot. Experiments were done in a five-blade linear cascade with an average turbulence intensity of 10.5%. The inlet and exit Mach numbers were 0.26 and 0.43, respectively. The inlet and exit mainstream Reynolds numbers based on the axial chord length of the blade were 475,000 and 720,000, respectively. The coolant-to-mainstream mass flow ratios (MFR) were varied from 0.5%, 0.75%, to 1% for the inlet purge flow. For the endwall film cooling holes and slashface leakage flow, blowing ratios (M) of 0.5, 1.0, and 1.5 were examined. Coolant-to-mainstream density ratios (DR) that range from 1.0 (close to low temperature experiments) to 1.5 (intermediate DR) and 2.0 (close to engine conditions) were also examined. The results provide the gas turbine engine designers a better insight into improved film cooling hole configurations as well as various parametric effects on endwall film cooling when the inlet (swirl) purge flow and slashface leakage flow were incorporated.


2021 ◽  
Author(s):  
Siavash Khajehhasani

A numerical investigation of the film cooling performance on novel film hole schemes is presented using Reynolds-Averaged Navier-Stokes analysis. The investigation considers low and high blowing ratios for both flat plate film cooling and the leading edge of a turbine blade. A novel film hole geometry using a circular exit shaped hole is proposed, and the influence of an existing sister holes’ technique is investigated. The results indicate that high film cooling effectiveness is achieved at higher blowing ratios, results of which are even greater when in the presence of discrete sister holes where film cooling effectiveness results reach a plateau. Furthermore, a decrease in the strength of the counter-rotating vortex pairs is evident, which results in more attached coolant to the plate’s surface and a reduction in aerodynamic losses. Modifications are made to the spanwise and streamwise locations of the sister holes around the conventional cylindrical hole geometry. It is found that the spanwise variations have a significant influence on the film cooling effectiveness results, while only minor effects are observed for the streamwise variations. Positioning the sister holes in locations farther from the centerline increases the lateral spreading of the coolant air over the plate’s surface. This result is further verified through the flow structure analysis. Combinations of sister holes are joined with the primary injection hole to produce innovative variant sister shaped single-holes. The jet lift-off is significantly decreased for the downstream and up/downstream configurations of the proposed scheme for the flat plate film cooling. These schemes have shown notable film cooling improvements whereby more lateral distribution of coolant is obtained and less penetration of coolant into the mainstream flow is observed. The performance of the sister shaped single-holes are evaluated at the leading edge of a turbine blade. At the higher blowing ratios, a noticeable improvement in film cooling performance including the effectiveness and the lateral spread of the cooling air jet has been observed for the upstream and up/downstream schemes, in particular on the suction side. It is determined that the mixing of the coolant with the high mainstream flow at the leading edge of the blade is considerably decreased for the upstream and up/downstream configurations and more adhered coolant to the blade’s surface is achieved.


Sign in / Sign up

Export Citation Format

Share Document