Modeling of Size Effects on the Flow Stress of Type 304 Stainless Steel and Application in Coining Process

Author(s):  
Gap-Yong Kim ◽  
Muammer Koc ◽  
Jun Ni

Application of microforming in various research areas has received much attention due to the increased demand for miniature metallic parts that require mass production. For the accurate analysis and design of microforming process, proper modeling of material behavior at the micro/meso-scale is necessary by considering the size effects. Two size effects are known to exist in metallic materials. One is the “grain size” effect, and the other is the “feature/specimen size” effect. This study investigated the “feature/specimen size” effect and introduced a scaling model which combined both feature/specimen and grain size effects. Predicted size effects were compared with experiments obtained from previous research and showed a very good agreement. The model was also applied to forming of micro-features by coining. A flow stress model for Type 304 stainless steel taking into consideration the effect of the grain and feature size was developed and implemented into a finite element simulation tool for an accurate numerical analysis. The scaling model offered a simple way to model the size effect down to length scales of a couple of grains and extended the use of continuum plasticity theories to micro/meso-length scales.

1985 ◽  
Vol 107 (2) ◽  
pp. 97-100 ◽  
Author(s):  
P. Dadras

A model for stress-strain behavior under hot working conditions has been proposed. Based on experimental data, equations for the dependence of flow stress on strain, strain rate, and temperature have been developed. Application to type 304 stainless steel and AISI 1055 steel has been demonstrated.


Author(s):  
Gap-Yong Kim ◽  
Muammer Koç ◽  
Jun Ni

Increasing demands for miniature metallic parts have driven the application of microforming in various industries. Only a limited amount of research is, however, available on the forming of miniature features in high strength materials. This study investigated the forming of microfeatures in Type 304 stainless steel by using the coining process. Experimental work was performed to study the effects of workpiece thickness, preform shape, grain size, and feature size on the formation of features ranging from 320μmto800μm. It was found that certain preform shapes enhance feature formation by allowing a favorable flow of the bulk material. In addition, a flow stress model for Type 304 stainless steel that took into consideration the effects of the grain and feature sizes was developed to accurately model and better understand the coining process. Weakening of the material, as the grain size increased at the miniature scale, was explained by the Hall–Petch relationship and the feature size effect.


Alloy Digest ◽  
2016 ◽  
Vol 65 (2) ◽  

Abstract Outokumpu Type 630 is a martensitic age hardenable alloy of composition 17Cr-4Ni. The alloy has high strength and corrosion resistance similar to that of Type 304 stainless steel. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1238. Producer or source: Outokumpu High Performance Stainless.


Sign in / Sign up

Export Citation Format

Share Document