A Sharp Surface Tension Modeling Method for Capillarity-Dominant Two-Phase Incompressible Flows

Author(s):  
Zhaoyuan Wang ◽  
Albert Y. Tong

A surface tension implementation algorithm for two-phase incompressible interfacial flows is presented in this study. The surface tension effect is treated as a jump condition at the interface and incorporated into the Navier-Stokes equation via a capillary pressure gradient. The interface is tracked by a coupled level set and volume-of-fluid (CLSVOF) method based on the finite-volume formulation on a fixed Eulerian grid. It has been shown in a stationary benchmark test the spurious currents are greatly reduced and the sharp pressure jump across the interface is well preserved. Numerical instabilities caused by the sharp treatment on a fixed grid are avoided. Several dynamic tests are performed to further validate the accuracy and versatility of the present method, the results of which are in good agreement with data reported in the literature.

1998 ◽  
Vol 09 (08) ◽  
pp. 1383-1391 ◽  
Author(s):  
Yu Chen ◽  
Shulong Teng ◽  
Takauki Shukuwa ◽  
Hirotada Ohashi

A model with a volumetric stress tensor added to the Navier–Stokes Equation is used to study two-phase fluid flows. The implementation of such an interface model into the lattice-Boltzmann equation is derived from the continuous Boltzmann BGK equation with an external force term, by using the discrete coordinate method. Numerical simulations are carried out for phase separation and "dam breaking" phenomena.


2017 ◽  
Vol 28 (09) ◽  
pp. 1750120 ◽  
Author(s):  
Yong Peng ◽  
Yun Fei Mao ◽  
Bo Wang ◽  
Bo Xie

Equations of State (EOS) is crucial in simulating multiphase flows by the pseudo-potential lattice Boltzmann method (LBM). In the present study, the Peng and Robinson (P–R) and Carnahan and Starling (C–S) EOS in the pseudo-potential LBM with Exact Difference Method (EDM) scheme for two-phase flows have been compared. Both of P–R and C–S EOS have been used to study the two-phase separation, surface tension, the maximum two-phase density ratio and spurious currents. The study shows that both of P–R and C–S EOS agree with the analytical solutions although P–R EOS may perform better. The prediction of liquid phase by P–R EOS is more accurate than that of air phase and the contrary is true for C–S EOS. Predictions by both of EOS conform with the Laplace’s law. Besides, adjustment of surface tension is achieved by adjusting [Formula: see text]. The P–R EOS can achieve larger maximum density ratio than C–S EOS under the same [Formula: see text]. Besides, no matter the C–S EOS or the P–R EOS, if [Formula: see text] tends to 0.5, the computation is prone to numerical instability. The maximum spurious current for P–R is larger than that of C–S. The multiple-relaxation-time LBM still can improve obviously the numerical stability and can achieve larger maximum density ratio.


2016 ◽  
Vol 19 (2) ◽  
pp. 329-353 ◽  
Author(s):  
Florian Kummer ◽  
Tim Warburton

AbstractIn two-phase flow simulations, a difficult issue is usually the treatment of surface tension effects. These cause a pressure jump that is proportional to the curvature of the interface separating the two fluids. Since the evaluation of the curvature incorporates second derivatives, it is prone to numerical instabilities. Within this work, the interface is described by a level-set method based on a discontinuous Galerkin discretization. In order to stabilize the evaluation of the curvature, a patch-recovery operation is employed. There are numerous ways in which this filtering operation can be applied in the whole process of curvature computation. Therefore, an extensive numerical study is performed to identify optimal settings for the patch-recovery operations with respect to computational cost and accuracy.


Volume 3 ◽  
2004 ◽  
Author(s):  
Jiongyang Wu ◽  
Wei Shyy ◽  
Stein T. Johansen

The widely used Reynolds-Averaged Navier-Stokes (RANS) approach, such as the k-ε two-equation model, has been found to over-predict the eddy viscosity and can dampen out the time dependent fluid dynamics in both single- and two-phase flows. To improve the predictive capability of this type of engineering turbulence closures, a consistent method is offered to bridge the gap between DNS, LES and RANS models. Based on the filter size, conditional averaging is adopted for the Navier-Stokes equation to introduce one more parameter into the definition of the eddy viscosity. Both time-dependent single-phase and cavitating flows are simulated by a pressure-based method and finite volume approach in the framework of the Favre-averaged equations coupled with the new turbulence model. The impact of the filter-based concept, including the filter size and grid dependencies, is investigated using the standard k-ε model and with the available experimental information.


2005 ◽  
Vol 475-479 ◽  
pp. 3211-3214
Author(s):  
San Bing Ren ◽  
Jun Fei Fan ◽  
Zong Ze Huang ◽  
Yi Sheng Chen ◽  
You Duo He

In the present paper, applied the experiential correlation, the gas holdup and distribution of two phase zone which formed by argon blown were determined. The flow variables of molten steel and turbulence parameters in the Ladle Furnace were estimated utilizing the results of frontal calculation and through numerically solution momentum Navier-Stokes equation in conjunction with k-εturbulence model. Several different spray styles including blowing through single hole, double holes, top lance were simulated and compared in this project.


2008 ◽  
Vol 33-37 ◽  
pp. 1083-1088
Author(s):  
Norio Arai ◽  
Kota Fujimura ◽  
Yoko Takakura

When a bluff body is located in a uniform flow, the flow is separated and vortices are formed. Consequently, the vortices cause “flow-induced vibrations”. Especially, if the Strouhal number and the frequency of the body oscillation coincide with the natural frequency, the lock-in regime will occur and we could find the large damages on it. Therefore, it is profitable, in engineering problems, to clarify this phenomenon and to suppress the vibration, in which the effect of elastic walls on the suppression is focused. Then, the aims of this article are to clarify the oscillatory characteristics of the elastic body and the flowfield around the body by numerical simulations, in which a square pillar with elastic walls is set in a uniform flow. Two dimensional incompressible flows are solved by the continuity equation, Navier-Stokes equation and the Poisson equation which are derived by taking divergence of Navier-Stokes equation. Results show that a small deformation of elastic walls has a large influence on the body motion. In particular, the effect is very distinct at the back.


1965 ◽  
Vol 87 (4) ◽  
pp. 977-985 ◽  
Author(s):  
R. D. Ivany ◽  
F. G. Hammitt

Collapse of a spherical bubble in a compressible liquid, including the effects of surface tension, viscosity, and an adiabatic compression of gas within the bubble is investigated by numerical solutions of the hydrodynamic equations. A limiting value of shear viscosity causes the bubble collapse to slow down markedly, for both compressible and incompressible liquids, whereas moderate viscosities have very little effect on the rate of collapse. The inclusion of surface tension and viscosity introduces two scaling parameters into the solution, so that a single normalized solution is no longer sufficient to describe collapse behavior. The magnitude of the density changes calculated for the compressible liquid and the extremely rapid changes with time suggest that the usual Navier-Stokes equation of motion may not be appropriate. The possibility of liquid relaxational phenomenon and its contribution to sonoluminescence is considered. Shock waves or damagingly high pressures are not generated during collapse at a distance in the liquid equal to the initial radius from the center of collapse, although they will appear at such a distance if the bubble rebounds.


Sign in / Sign up

Export Citation Format

Share Document