Industrial Mentors: An Often Untapped Resource in Undergraduate Research Programs

Author(s):  
Laila Guessous ◽  
Brian Sangeorzan ◽  
Qian Zou ◽  
Xia Wang

Students taking part in a 10-week summer research experience for undergraduates (REU) program in the department of mechanical engineering at Oakland University receive three levels of mentorship: from faculty, graduate students and researchers/engineers from industry. Industrial mentors, all of whom volunteer to take part in the experience, play a variety of roles as part of the program and are viewed by the authors as an often untapped resource in undergraduate research programs. This paper focuses on the experience gained from involving industrial mentors in the REU program and on the lessons learned: what worked, what didn’t work and what improvements can be made in the following years.

2020 ◽  
Vol 1 (1) ◽  
pp. 1-32
Author(s):  
Abbey L. Dvorak ◽  
Eugenia Hernandez-Ruiz ◽  
Halle Nick ◽  
Ruowen Qi ◽  
Celeste Alderete ◽  
...  

Course-based undergraduate research experiences (CURE) allow students opportunities to develop research skills. In a scaffolded CURE, music therapy and music education students composed, evaluated, and selected the music stimuli used in a music and mindfulness study with non-musicians at Site 1 and musicians at Site 2. The purposes of this paper are to (a) describe the process of student music stimuli composition and evaluation for use in a course-based undergraduate research experience and (b) identify benefits, challenges, and lessons learned from the viewpoints of students, graduate assistants, and faculty who participated in the multi-site study. Eight students, two graduate assistants, and two faculty provide an overview of the CURE teaching model and assignments, and share first-person accounts of their experiences participating in this CURE.  


Author(s):  
Janet Y. Tsai ◽  
Daria Kotys-Schwartz ◽  
Beverly Louie ◽  
Virginia Ferguson ◽  
Alyssa Berg

At the University of Colorado Boulder (CU), a research-based undergraduate mentoring program is now in its second year of implementation. The program, Your Own Undergraduate Research Experience (YOU’RE@CU) has three main goals: improve the retention rate of diverse groups in undergraduate engineering, build undergraduate interest in engineering research, and prepare graduate students to take on leadership roles in either academia or industry-based research careers. In YOU’RE@CU, undergraduate students are paired with a graduate mentor and work in the graduate student’s lab several hours a week. Undergraduate mentees enroll in a one-credit seminar course focusing on research and graduate school opportunities, and are assessed via pre- and post-surveys to gauge their excitement and interest in engineering. The undergraduates also respond to biweekly qualitative reflective questions while participating in the program. Graduate mentors complete several reflective questions about their experiences and are required to complete pre- and post-assessments. Adopting a person-centered, case study approach, this paper focuses on two telling examples of research-based mentoring relationships in the YOU’RE@CU program. Given identical mentor training through YOU’RE@CU, two graduate students start the Spring 2012 semester by meeting with their mentees to launch a research project. By examining application, pre-survey, reflective questions, and post-survey responses from these four participants, the differences in the trajectory of the two paired mentoring relationships can be clearly seen over the course of one semester. This close examination of two disparate mentoring relationships is instructive in understanding the subtle details that create either a positive learning environment or an uncomfortable lab situation for young engineers, and assists program administrators in making improvements in subsequent years.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Stephanie M. George ◽  
Zachary J. Domire

Abstract Undergraduate research continues to serve as an effective strategy for mitigating the effects of a leaky pipeline. Significant funding from institutions and government agencies has increased the number of students participating in undergraduate research. In this paper, we report on the six-year experience of a National Science Foundation funded Research Experiences for Undergraduates (REU) Site: Biomedical Engineering in Simulations, Imaging, and Modeling (BME-SIM). The operation and evaluation of the program are both described. We report on the results from 55 students over six summers from 2014 to 2019. Our program was successful in attracting a diverse group of participants including 46% under-represented minority students and 53% women. Based on evaluation results, students reported significant gains in technical skills, communication skills, and knowledge of graduate school. Our findings indicate baseline gender differences for several learning outcomes, where women and nonbinary students report lower levels of mastery. These gaps are closed by the end of the program except for confidence in skills, which is still significantly lower than those reported by male counterparts. The impact of the experience on ultimate career path is difficult to determine due to underlying biases and other motivating factors; however, 67.6% of graduates have entered graduate programs. Finally, we have provided lessons learned for those who are interested in building a summer research program. In conclusion, we have described the successful implementation of an REU site and the positive learning outcomes of the student participants.


Author(s):  
Janet Y. Tsai ◽  
Daria Kotys-Schwartz ◽  
Virginia Ferguson ◽  
Beverly Louie

At the University of Colorado, Boulder, a new program designed to link graduate students with 1st and 2nd year undergraduate students through engineering research projects and mentoring relationships was initiated in Spring 2011. Your Own Undergraduate Research Experience at the University of Colorado (YOU’RE@CU) has three main goals: (1) increase retention of undergraduate students in engineering, particularly women and underrepresented minorities (URMs); (2) excite undergraduate student interest in research projects and future careers in academia or industry; (3) provide graduate students with training and hands-on mentoring experience with the expectation that this will positively influence graduate student choices to seek a career in academia. This paper illustrates the details of the YOU’RE@CU program during its pilot implementation in Spring 2011. The assessment strategy and methods are also explained, with presentation of qualitative data and discussion of the overall data analysis process.


2016 ◽  
Vol 15 (3) ◽  
pp. ar28 ◽  
Author(s):  
Medeva Ghee ◽  
Micere Keels ◽  
Deborah Collins ◽  
Cynthia Neal-Spence ◽  
Earnestine Baker

Although the importance of undergraduate research experiences in preparing students for graduate study and research careers is well documented, specific examination of program components is needed to assess the impact of these programs on underrepresented (UR) students. The Leadership Alliance, a consortium of leading PhD-granting and minority-serving institutions (MSIs), has leveraged its diverse partnership to place UR students from MSI and non-MSI institutions in competitive research environments through its national Summer Research Early Identification Program. Using longitudinal pre/post data collected from student surveys, we applied social cognitive career theory as a conceptual framework to examine how research engagement, skill development, and mentorship aspects of a summer research program affect students’ commitment to pursue research careers. Self-reported knowledge of research skills, time engaged in research activity, and students’ understanding of and attitudes toward pursuing graduate study were measured in relation to the classification of students’ home undergraduate institution, level of students’ pre-existing research experience, and demographic factors. Our results provide evidence of specific programmatic components that are beneficial for UR students from varying academic and cultural backgrounds. This study describes important aspects of summer research programs that will contribute to students’ ability to persist in science careers.


2014 ◽  
Vol 13 (4) ◽  
pp. 711-723 ◽  
Author(s):  
David Lopatto ◽  
Charles Hauser ◽  
Christopher J. Jones ◽  
Don Paetkau ◽  
Vidya Chandrasekaran ◽  
...  

In their 2012 report, the President's Council of Advisors on Science and Technology advocated “replacing standard science laboratory courses with discovery-based research courses”—a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates.


2019 ◽  
Vol 80 (1) ◽  
pp. 22 ◽  
Author(s):  
Hailley M. Fargo ◽  
Nicholas J. Rowland ◽  
Jeffrey A. Knapp

In the ACRL white paper “Intersections of Scholarly Communication and Information Literacy: Creating Strategic Collaborations for a Changing Academic Environment,” the authors suggested librarians should reach out to “formal undergraduate research programs where faculty are paired one-on-one with undergraduate students.” By partnering with research groups, librarians could introduce the concepts behind scholarly communication and the information cycle, thereby enhancing the undergraduate research experience.


2021 ◽  
Author(s):  
Michel Shamoon-Pour ◽  
Caitlin J. Light ◽  
Megan Fegley

AbstractTwo major COVID-19 pandemic challenges presented for in-person instruction included adhering to social distancing guidelines and accommodating remote learners who were temporarily isolated or permanently participating from afar. At Binghamton University, our First-year Research Immersion (FRI) program was challenged with providing students with a wet lab course-based undergraduate research experience (CURE), an intense hands-on experience that emphasized student teamwork, lab protocol development, iteration, troubleshooting and other elements of the process of science that could not be replicated in a fully remote environment. We developed an innovative technology approach to maximize all students’ connection to the lab research experience utilizing dedicated mobile devices (iPod Touch) and video conferencing software (Zoom) to synchronously connect remote learners to in-person learners, peer mentors and instructors in our FRI research labs. In this way, despite limited lab capacities and fluctuating remote learning populations, we were able to connect remote learners to their peers and mentors in real-time and give them responsibilities that allowed them to be engaged and feel like meaningful participants in the research process. Although our students reported a preference for in-person labs, they noted this hybrid model was better than other traditionally employed remote-learning lab options. We believe lessons learned here can be applied to improve access to research in all situations and allow us to be prepared for other catastrophic disruptions to the educational system.


Sign in / Sign up

Export Citation Format

Share Document