Lattice Boltzmann Computations of Micro Channel and Micro Orifice Flows

Author(s):  
Taiho Yeom ◽  
Ignacio Zea Caloca ◽  
F. W. Chambers

Filtration in gas micro flows is an important problem complicated by possible slip flow for the filter media and the particles. Slip complicates Navier-Stokes solutions for the flow field. The direct simulation Monte Carlo method and its derivatives can be applied, but they are very complex. The Lattice Boltzmann Method (LBM) appears to offer some advantages for these slip and transitional flows. To evaluate the method, it was used to compute micro channel and micro orifice flows for a range of Knudsen numbers (Kn). The micro orifice simulates an array of micro filter fibers. The Lattice Bhatnagar-Gross-Krook (LBGK) single relaxation time approximation was used with the relaxation parameter accounting for density variations. The effects of different techniques for satisfying slip and no-slip boundary conditions were investigated. Both no-slip bounce-back and slip bounce-back boundary conditions were used. For the slip bounce-back boundary condition, the reflection factor and the accommodation coefficient were applied to improve accuracy. The micro channel computations were performed for conditions matching well-documented compressible slip-flow Navier-Stokes results in the literature. The channel had a length to height ratio of 100 and an inlet to outlet pressure ratio of 2.15. Knudsen numbers of 0.00194, 0.0194, and 0.194 were examined. The bounce-back boundary condition was applied at the top and bottom walls. A reflection factor of 0.85 provided the best agreement with the results in the literature for a Kn = 0.0194. The computed velocity profiles and the nonlinear streamwise pressure profile display excellent agreement with the Navier-Stokes results in the literature at this Knudsen number. At Kn = 0.00194, pure bounce back and bounce back with reflection factor both yield very good results. At Kn = 0.194, the bounce back with reflection factor results exhibit significant deviations from the literature. The accommodation coefficient scheme does not show good results for these micro flows. The reflection factor boundary condition also was applied for the micro orifice flows. The two-dimensional orifice computations were conducted with a 0.6 ratio of the open orifice area to the total area to match results in the literature. The micro orifice LBM results are in good agreement with the literature for Reynolds numbers between 4.8 and 12.5. In summary, the Lattice Boltzmann Method appears promising for micro filter computations, but improvements are needed for larger Knudsen numbers and more sophisticated relaxation time models may be needed for increased compressibility effects at higher Reynolds numbers.

Author(s):  
Ru Yang ◽  
Chin-Sheng Wang

A Lattice Boltzmann method is employed to investigate the flow characteristics and the heat transfer phenomenon between two parallel plates separated by a micro-gap. A nine-velocity model and an internal energy distribution model are used to obtain the mass, momentum and temperature distributions. It is shown that for small Knudsen numbers (Kn), the current results are in good agreement with those obtained from the traditional Navier-Stokes equation with non-slip boundary conditions. As the value of Kn is increased, it is found that the non-slip condition may no longer be valid at the wall boundary and that the flow behavior changes to one of slip-flow. In slip flow regime, the present results is still in good agreement with slip-flow solution by Navier Stokes equations. The non-linear nature of the pressure and friction distribution for micro-channel flow is gieven. Finally, the current investigation presents a prediction of the temperature distribution for micro-channel flow under the imposed conditions of an isothermal boundary.


2007 ◽  
Vol 18 (04) ◽  
pp. 693-700 ◽  
Author(s):  
XIN FU ◽  
BAOMING LI ◽  
JUNFENG ZHANG ◽  
FUZHI TIAN ◽  
DANIEL Y. KWOK

In traditional computational fluid dynamics, the effect of surface energetics on fluid flow is often ignored or translated into an arbitrary selected slip boundary condition in solving the Navier-Stokes equation. Using a bottom-up approach, we show in this paper that variation of surface energetics through intermolecular theory can be employed in a lattice Boltzmann method to investigate both slip and non-slip phenomena in microfluidics in conjunction with the description of electrokinetic phenomena for electrokinetic slip flow. Rather than using the conventional Navier-Stokes equation with a slip boundary condition, the description of electrokinetic slip flow in microfluidics is manifested by the more physical solid-liquid energy parameters, electrical double layer and contact angle in the mean-field description of the lattice Boltzmann method.


Author(s):  
Joris C. G. Verschaeve

By means of the continuity equation of the incompressible Navier–Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.


Author(s):  
Derek C. Tretheway ◽  
Luoding Zhu ◽  
Linda Petzold ◽  
Carl D. Meinhart

This work examines the slip boundary condition by Lattice Boltzmann simulations, addresses the validity of the Navier’s hypothesis that the slip velocity is proportional to the shear rate and compares the Lattice Boltzmann simulations to the experimental results of Tretheway and Meinhart (Phys. of Fluids, 14, L9–L12). The numerical simulation models the boundary condition as the probability, P, of a particle to bounce-back relative to the probability of specular reflection, 1−P. For channel flow, the numerically calculated velocity profiles are consistent with the experimental profiles for both the no-slip and slip cases. No-slip is obtained for a probability of 100% bounce-back, while a probability of 0.03 is required to generate a slip length and slip velocity consistent with the experimental results of Tretheway and Meinhart for a hydrophobic surface. The simulations indicate that for microchannel flow the slip length is nearly constant along the channel walls, while the slip velocity varies with wall position as a results of variations in shear rate. Thus, the resulting velocity profile in a channel flow is more complex than a simple combination of the no-slip solution and slip velocity as is the case for flow between two infinite parallel plates.


Author(s):  
Gh. Reza Salehi ◽  
Masoud JalaliBidgoli ◽  
Saeed ZeinaliDanaloo ◽  
Kazem HasanZadeh

In this paper, distributions of velocity and flow rate of micro channels are studied. Moreover, the parameters which influence them were also discussed, as well as their effects and relevant curves. In the Analytical study, the governing equation in specific micro flows is obtained. This equation is specifically investigated for slip flow in two micro parallel plates (micro channel).At the next step numerical representation shows the influence of the related parameters in micro channel flow such as Knudsen number, thermal -accommodation coefficient, mass flow rate ratio and pressure ratio (outlet to inlet), Tangential Momentum Accommodation Coefficient with relative curves, and flow rate distribution in slippery state to no slip state has been compared as the another part of this solution. Finally, the results of investigating parameters and dimensionless numbers in micro channels are reviewed.


Author(s):  
H. D. Madhawa Hettiarachchi ◽  
Mihajlo Golubovic ◽  
William M. Worek

Slip-flow and heat transfer in rectangular microchannels are studied numerically for constant wall temperature (T) and constant wall heat flux (H2) boundary conditions under thermally developing flow. Navier-Stokes and energy equations with velocity slip and temperature jump at the boundary are solved using finite volume method in a three dimensional cartesian coordinate system. A modified convection-diffusion coefficient at the wall-fluid interface is defined to incorporate the temperature-jump boundary condition. Validity of the numerical simulation procedure is stabilized. The effect of rarefaction on heat transfer in the entrance region is analyzed in detail. The velocity slip has an increasing effect on the Nusselt (Nu) number whereas temperature jump has a decreasing effect, and the combined effect could result increase or decrease in the Nu number. For the range of parameters considered, there could be high as 15% increase or low as 50% decrease in fully developed Nu is plausible for T thermal boundary condition while it could be high as 20% or low as 35% for H2 thermal boundary condition.


2007 ◽  
Vol 18 (05) ◽  
pp. 805-817 ◽  
Author(s):  
G. H. TANG ◽  
W. Q. TAO ◽  
Y. L. HE

An entropic lattice Boltzmann model for gaseous slip flow in microchannels is presented. We relate the Knudsen number with the relaxation time in the lattice Boltzmann evolution equation from the gas kinetic theory. The slip velocity taking the momentum accommodation coefficient into account at the solid boundaries is obtained with kinetic boundary conditions. The two-dimensional micro-Poiseuille flow, microflow over a backward-facing step, micro-lid-driven cavity flow, and three-dimensional microflow are simulated using the present model. Numerical tests show that the results of the present lattice Boltzmann method together with the boundary scheme are in good agreement with the analytical solutions and numerical simulations by the finite volume method.


Author(s):  
Marc-Florian Uth ◽  
Alf Crüger ◽  
Heinz Herwig

In micro or nano flows a slip boundary condition is often needed to account for the special flow situation that occurs at this level of refinement. A common model used in the Finite Volume Method (FVM) is the Navier-Slip model which is based on the velocity gradient at the wall. It can be implemented very easily for a Navier-Stokes (NS) Solver. Instead of directly solving the Navier-Stokes equations, the Lattice-Boltzmann method (LBM) models the fluid on a particle basis. It models the streaming and interaction of particles statistically. The pressure and the velocity can be calculated at every time step from the current particle distribution functions. The resulting fields are solutions of the Navier-Stokes equations. Boundary conditions in LBM always not only have to define values for the macroscopic variables but also for the particle distribution function. Therefore a slip model cannot be implemented in the same way as in a FVM-NS solver. An additional problem is the structure of the grid. Curved boundaries or boundaries that are non-parallel to the grid have to be approximated by a stair-like step profile. While this is no problem for no-slip boundaries, any other velocity boundary condition such as a slip condition is difficult to implement. In this paper we will present two different implementations of slip boundary conditions for the Lattice-Boltzmann approach. One will be an implementation that takes advantage of the microscopic nature of the method as it works on a particle basis. The other one is based on the Navier-Slip model. We will compare their applicability for different amounts of slip and different shapes of walls relative to the numerical grid. We will also show what limits the slip rate and give an outlook of how this can be avoided.


Sign in / Sign up

Export Citation Format

Share Document