Impinging Jet Cooled Plate Fin Heat Sinks With Turbulators Enhancement

Author(s):  
Ganesh Subbuswamy ◽  
Xianchang Li

Extended surfaces (fins) and impinging jets have been used to enhance heat transfer in many applications. In electronic thermal management, heat sinks can be designed to take advantage of the combined effect of fins and jet impingement such as jets impinging on an array of pin fins or plate fins. Significant studies have been focused on the thermal resistance, pressure drop, and the parametric effect of Reynolds number, fin thickness, density, and height. To further improve the heat sink performance, ribs/turbulators, which are widely employed in internal cooling of gas turbine blades, can be integrated into the plate fins, especially close to the surface area with low heat transfer coefficient. Numerical study is performed in this paper to examine the flow and heat transfer behavior of plate fin heat sinks cooled by an impinging jet and enhanced by the ribs. The height and shape of the turbulators are investigated to achieve the best performance. Parametric studies also include the flow Reynolds number and the spacing between the ribs. Heat transfer mechanism is explored for the confined turbulence jet with and without turbulators. It is expected that the rib enhancement can lead to a more cost-effective heat sink for cooling of electronic components. Further enhancement and optimization are discussed in this paper.

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Abdel Rahman Salem ◽  
Farah Nazifa Nourin ◽  
Mohammed Abousabae ◽  
Ryoichi S. Amano

Abstract Internal cooling of gas turbine blades is performed with the combination of impingement cooling and serpentine channels. Besides gas turbine blades, the other turbine components such as turbine guide vanes, rotor disks, and combustor wall can be cooled using jet impingement cooling. This study is focused on jet impingement cooling, in order to optimize the coolant flow, and provide the maximum amount of cooling using the minimum amount of coolant. The study compares between different nozzle configurations (in-line and staggered), two different Reynold's numbers (1500 and 2000), and different stand-off distances (Z/D) both experimentally and numerically. The Z/D considered are 3, 5, and 8. In jet impingement cooling, the jet of fluid strikes perpendicular to the target surface to be cooled with high velocity to dissipate the heat. The target surface is heated up by a direct current (DC) power source. The experimental results are obtained by means of thermal image processing of the captured infra-red (IR) thermal images of the target surface. Computational fluid dynamics (CFD) analysis were employed to predict the complex heat transfer and flow phenomena, primarily the line-averaged and area-averaged Nusselt number and the cross-flow effects. In the current investigation, the flow is confined along with the nozzle plate and two parallel surfaces forming a bi-directional channel (bi-directional exit). The results show a comparison between heat transfer enhancement with in-line and staggered nozzle arrays. It is observed that the peaks of the line-averaged Nusselt number (Nu) become less as the stand-off distance (Z/D) increases. It is also observed that the fluctuations in the stagnation heat transfer are caused by the impingement of the primary vortices originating from the jet nozzle exit.


Author(s):  
Thantup Nontula ◽  
Natthaporn Kaewchoothong ◽  
Wacharin Kaew-apichai ◽  
Chayut Nuntadusit

Jet impingement has been applied for internal cooling in gas turbine blades. In this study, heat transfer characteristics of impinging jets from a row of circular orifices were investigated inside a flow channel with rotations. The Reynolds number (Re) based on the jet mean velocity was fixed at 6,700. Whereas, the rotation number (Ro) of a channel was varied from 0 to 0.0099. The jet-to-impingement distance ratio (L/Dj) and jet pitch ratio (P/Dj) were respective 2 and 4, Dj is a jet diameter of 5 mm. The thermochromic liquid crystals (TLCs) technique was used to measure the heat transfer coefficient distributions on an impingement surface. The results show that heat transfer enhancement on a jet impingement surface depended on the effects of crossflow and Coriolis force. The local Nusselt number at X/Dj?20 on the leading side (LS) was higher than on the trailing side (TS) while heat transfer on the LS at 20?X/Dj?40 gained the lowest, compared to on the TS. The average Nusselt number ratios ( ) on the TS at Ro = 0.0049 gave higher than on the LS of around 2.17%. On the other hand, the on the TS at Ro = 0.0099 was less than the LS of about 0.08%.


Author(s):  
Yan Fan ◽  
Poh Seng Lee ◽  
Li-Wen Jin ◽  
Beng Wah Chua ◽  
Na-Si Mou ◽  
...  

A novel cylindrical oblique fin minichannel heat sink was proposed to cool cylindrical heat sources using forced convection scheme. In this paper, parametric numerical study was employed to understand the importance of the various dimensions of the oblique fin heat sinks and their heat transfer performance and pressure drop. Three dimensional conjugated heat transfer simulations were carried out using Computational Fluid Dynamics (CFD) method based on laminar flow to determine its performance in the oblique fin heat sink. 214 parametric studies were performed by varying the oblique angle from 20° to 45°, secondary channel gap from 1mm to 5mm and Reynolds number from 200 to 900. Their thermal performance was compared for a constant heat flux of 1 W/cm2. The results show that the flow is main channel directed in shorter secondary channel structure while the flow becomes secondary channel directed in longer secondary channel structure. Secondary flow becomes more effective in heat transfer when increasing the secondary channel gap. When the oblique angle increases, more flow will be diverted into secondary channel and improve flow mixing to enhance the heat transfer. The best configuration in this paper was suggested based on the numerical data point. The overall performance can be improved up to 110% at Reynolds number of 900 compared with conventional straight fin minichannel. Therefore, this is the attractive candidate for future cylindrical heat sinks.


2019 ◽  
Vol 29 (11) ◽  
pp. 4074-4092 ◽  
Author(s):  
Zhiguo Tang ◽  
Hai Li ◽  
Feng Zhang ◽  
Xiaoteng Min ◽  
Jianping Cheng

Purpose The purpose of this paper is to explore the flow and heat transfer characteristics of the jet impingement onto a conical heat sink and evaluate the ability of heat transfer enhancement. Design/methodology/approach A numerical study of the flow and heat transfer of liquid impingement on cone heat sinks was conducted, and transition SST turbulence model was validated and adopted. The flow and thermal performances were investigated with the Reynolds number that ranges from 5,000 to 23,000 and cone angle that ranges from 0° to 70° in four regions. Findings Local Nusselt numbers are large, and pressure coefficients drop rapidly near the stagnation point. In the conical bottom edge, a secondary inclined jet was observed, thereby introducing a horseshoe vortex that causes drastic fluctuations in the curves of the flow and heat transfer. The average Nusselt numbers are higher in a conical protuberance than in flat plates in most cases, thus indicating that the heat transfer performance of jet impingement can be improved by a cone heat sink. The maximum increase is 13.6 per cent when the cone angle is 60°, and the Reynolds number is 23,000. Originality/value The flow and heat transfer behavior at the bottom edge of the cone heat sink is supplemented. The average heat transfer capacity of different heat transfer radii was evaluated, which provided a basis for the study of cone arrays.


2021 ◽  
Author(s):  
Mahyar Pourghasemi ◽  
Nima Fathi

Abstract 3-D numerical simulations are performed to investigate liquid sodium (Na) flow and the heat transfer within miniature heat sinks with different geometries and hydraulic diameters of less than 5 mm. Two different straight small-scale heat sinks with rectangular and triangular cross-sections are studied in the laminar flow with the Reynolds number up to 1900. The local and average Nusselt numbers are obtained and compared against eachother. At the same surface area to volume ratio, rectangular minichannel heat sink leads to almost 280% higher convective heat transfer rate in comparison with triangular heat sink. It is observed that the difference between thermal efficiencies of rectangular and triangular minichannel heat sinks was independent of flow Reynolds number.


Author(s):  
D. Sahray ◽  
H. Shmueli ◽  
N. Segal ◽  
G. Ziskind ◽  
R. Letan

In the present work, horizontal-base pin fin heat sinks exposed to free convection in air are studied. They are made of aluminum, and there is no contact resistance between the base and the fins. For the same base dimensions the fin height and pitch vary. The fins have a constant square cross-section. The edges of the sink are blocked: the surrounding insulation is flush with the fin tips. The effect of fin height and pitch on the performance of the sink is studied experimentally and numerically. In the experiments, the heat sinks are heated using foil electrical heaters. The heat input is set, and temperatures of the base and fins are measured. In the corresponding numerical study, the sinks and their environment are modeled using the Fluent 6 software. The results show that heat transfer enhancement due to the fins is not monotonic. The differences between sparsely and densely populated sinks are analyzed for various fin heights. Also assessed are effects of the blocked edges as compared to the previously studied cases where the sink edges were exposed to the surroundings.


2000 ◽  
Author(s):  
Qiao Lin ◽  
Shuyun Wu ◽  
Yin Yuen ◽  
Yu-Chong Tai ◽  
Chin-Ming Ho

Abstract This paper presents an experimental investigation on MEMS impinging jets as applied to micro heat exchangers. We have fabricated MEMS single and array jet nozzles using DRIE technology, as well as a MEMS quartz chip providing a simulated hot surface for jet impingement. The quartz chip, with an integrated polysilicon thin-film heater and distributed temperature sensors, offers high spatial resolution in temperature measurement due to the low thermal conductivity of quartz. From measured temperature distributions, heat transfer coefficients are computed for single and array micro impinging jets using finite element analysis. The results from this study for the first time provide extensive data on spatial distributions of micro impinging-jet heat transfer coefficients, and demonstrate the viability of MEMS heat exchangers that use micro impinging jets.


Author(s):  
Pratik S. Bhansali ◽  
Srinath V. Ekkad

Abstract Heat transfer over rotating surfaces is of particular interest in rotating machinery such as gas turbine engines. The rotation of the gas turbine disc creates a radially outward flow on the disc surface, which may lead to ingress of hot gases into the narrow cavity between the disc and the stator. Impingement of cooling jet is an effective way of cooling the disc and countering the ingress of the hot gases. Present study focusses on investigating the effect of introducing pin-fins over the rotating disc on the heat transfer. The jet Reynolds number has been varied from 5000 to 18000, and the rotating Reynolds number has been varied from 5487 to 12803 for an aluminum disc of thickness 6.35mm and diameter 10.16 cm, over which square pins have been arranged in an inline fashion. Steady state temperature measurements have been taken using thermocouples embedded in the disc close to the target surface, and area average Nusselt number has been calculated. The effects of varying the height of the pin-fins, distance between nozzle and the disc surface and the inclination of the impinging jet with the axis of rotation have also been studied. The results have been compared with those for a smooth aluminum disc of equal dimensions and without any pin-fins. The average Nusselt number is significantly enhanced by the presence of pin fins. In the impingement dominant regime, where the effect of disc rotation is minimal for a smooth disc, the heat transfer increases with rotational speed in case of pin fins. The effect of inclination angle of the impinging jet is insignificant in the range explored in this paper (0° to 20°).


Author(s):  
Sampath Kumar Chinige ◽  
Arvind Pattamatta

An experimental study using Liquid crystal thermography technique is conducted to study the convective heat transfer enhancement in jet impingement cooling in the presence of porous media. Aluminium porous sample of 10 PPI with permeability 2.48e−7 and porosity 0.95 is used in the present study. Results are presented for two different Reynolds number 400 and 700 with four different configurations of jet impingement (1) without porous foams (2) over porous heat sink (3) with porous obstacle case (4) through porous passage. Jet impingement with porous heat sink showed a deterioration in average Nusselt number by 10.5% and 18.1% for Reynolds number of 400 and 700 respectively when compared with jet impingement without porous heat sink configuration. The results show that for Reynolds number 400, jet impingement through porous passage augments average Nusselt number by 30.73% whereas obstacle configuration enhances the heat transfer by 25.6% over jet impingement without porous medium. Similarly for Reynolds number 700, the porous passage configuration shows average Nusselt number enhancement by 71.09% and porous obstacle by 33.4 % over jet impingement in the absence of porous media respectively.


Sign in / Sign up

Export Citation Format

Share Document