Structural Optimization Techniques for Developing Efficient Lightweight Vehicles and Components

Author(s):  
Raj Mohan Iyengar ◽  
Srinivasan Laxman ◽  
Shawn Morgans ◽  
Ramakrishna Koganti

Developing automotive vehicles and components to achieve light-weight designs and to meet design targets on structural stiffness, modal frequencies, durability, and crashworthiness, can no longer be driven by a “trial-and-error” strategy. Structural optimization tools provide the necessary analyses during the initial stages of vehicle development to arrive at the most efficient and effective designs. In this paper, we illustrate the importance of topological and gage optimization in achieving mass reduction without compromising on the structural requirements through two design examples.

2009 ◽  
Author(s):  
Srinivasan Laxman ◽  
Raj Mohan Iyengar ◽  
Shawn Morgans ◽  
Rama Koganti

2005 ◽  
Vol 127 (3) ◽  
pp. 415-423 ◽  
Author(s):  
C.-P. Teng ◽  
J. Angeles

Methods of structural optimization have been studied and developed over the last three decades. An important aspect of structural optimization pertains to the condition under which the loads are applied. Most machine structures in operation are subject to loads varying as functions of time. In this paper, a novel approach is proposed to cope with loads whose magnitudes vary within given bounds and with variable directions. The underlying ideas are applied to the structural optimization of the roller-carrying disk of a novel class of cam-follower speed reduction devices termed Speed-o-Cam (SoC). Results obtained in this paper are compared with a current prototype and with an intermediate design in which the dimensions of the roller pins are optimized. Combined with the optimum dimension of the roller pins, our structural-optimization results lead to an improvement of almost twice the stiffness with a mass reduction of 40% of the original prototype.


Author(s):  
Manas Metar

Abstract: Weight reduction techniques have been practiced by automobile manufacturers for the purpose of long range, less fuel consumption and achieving higher speeds. Due to the numerous set objectives that must be met, especially with respect to of car safety, automotive chassis design for vehicle weight reduction is a difficult task. In passenger classed vehicles using a monocoque chassis for vehicle construction has been a great solution for reducing overall wight of the vehicle body yet the structure is more stiffened and sturdier. However, some parts such as A-pillar, B-pillar, roof structure, floor pan can be further optimized to reduce more weight without affecting the strength needed for respective purposes. In this paper, the main focus is on reducing weight of the B-pillar. The B-pillar of a passenger car has been optimized using topology optimization and optimum weight reduction has been done. The modelling and simulation are done using SOLIDWORKS 3D software. The B-pillar in this study has been subjected to a static load of 140 KN. Further by providing goals and constraints the optimization was caried out. The results of Finite Element Analysis (FEA) of the original model are explained. The Topology Optimization resulted in reducing 53% of the original weight of the B-pillar. Keywords: Structural optimization techniques, weight reduction techniques, weight reduction technologies, need for weight reduction, Topology optimization, B-pillar design, structural optimization of B-pillar, Topology optimization of B-pillar.


1975 ◽  
Vol 97 (2) ◽  
pp. 635-642 ◽  
Author(s):  
S. Dubowsky ◽  
J. Maatuk ◽  
N. D. Perreira

The performance of machines and mechanical systems based on an evaluation of their theoretical design is often less than is optimally expected due to manufacturing errors, clearance, play in the machanism connections, wear, thermal gradients and unstable material properties. Yet the problem of identifying the sources of the poor performance based on available measured data has been treated essentially by trial and error methods. This study applies mathematical methods drawn from recently developed computer optimization techniques to identify the sources of this poor performance based on an examination of the system response.


1994 ◽  
Vol 116 (4) ◽  
pp. 997-1004 ◽  
Author(s):  
M. Chirehdast ◽  
H.-C. Gea ◽  
N. Kikuchi ◽  
P. Y. Papalambros

Structural optimization procedures usually start from a given design topology and vary proportions or boundary shapes of the design to achieve optimality of an objective under various constraints. This article presents examples of the application of a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated. A three-phase design process is used. In Phase I, an optimal initial topology is created by a homogenization method as a gray-scale image. In Phase II, the image is transformed to a realizable design using computer vision techniques. In Phase III, the design is parameterized and treated in detail by conventional size and shape optimization techniques. Fully-automated procedures for optimization of two-dimensional solid structures are outlined, and several practical design problems for this type of structures are solved using the proposed procedure, including a crane hook and a bicycle frame.


2003 ◽  
Vol 03 (02) ◽  
pp. 299-305 ◽  
Author(s):  
F. W. Williams ◽  
D. Kennedy

Transcendental dynamic member stiffness matrices for vibration problems arise from solving the governing differential equations to avoid the conventional finite element method (FEM) discretization errors. Assembling them into the overall dynamic structural stiffness matrix gives a transcendental eigenproblem, whose eigenvalues (natural frequencies or their squares) are found with certainty using the Wittrick–Williams algorithm. This paper gives equations for the recently discovered transcendental member stiffness determinant, which equals the appropriately normalized FEM dynamic stiffness matrix determinant of a clamped ended member modelled by infinitely many elements. Multiplying the overall transcendental stiffness matrix determinant by the member stiffness determinants removes its poles to improve curve following eigensolution methods. The present paper gives the first ever derivation of the Bernoulli–Euler member stiffness determinant, which was previously found by trial-and-error and then verified. The derivation uses the total equivalence of the transcendental formulation and an infinite order FEM formulation, which incidentally gives insights into conventional FEM results.


Sign in / Sign up

Export Citation Format

Share Document