scholarly journals Development and Characterization of a Loop Heat Pipe With a Planar Evaporator and Condenser

Author(s):  
H. Arthur Kariya ◽  
Daniel F. Hanks ◽  
Teresa B. Peters ◽  
John G. Brisson ◽  
Evelyn N. Wang

We present the development and characterization of an air-cooled loop heat pipe with a planar evaporator and condenser. The condenser is mounted vertically above the evaporator, and impellers are integrated both sides of the condenser with tight clearance. The planar geometry allows for effective convective cooling by increasing the surface area and the convective heat transfer coefficient. To ensure condensation across the area of the condenser, a wicking structure is integrated in the condenser. The evaporator incorporates a multi-layer wicking structure to maintain a thermal gradient between the vapor and liquid regions, which is used to sustain the vapor and liquid pressures necessary for operation. The loop heat pipe was demonstrated to remove 140 W of heat at a temperature difference between the evaporator base and inlet air of 50 °C. This work is the first step towards the development of an air-cooled, multiple-condenser loop heat pipe.

2016 ◽  
Vol 852 ◽  
pp. 666-674 ◽  
Author(s):  
Emerald Ninolin ◽  
Godson Asirvatham Lazarus ◽  
K. Ramachandran

The thermal performance of a compact loop heat pipe is fabricated and tested for different heat inputs ranging from 30 W to 500 W using water and silver-water nanofluid with low volume concentrations of silver nanoparticles (0.03% and 0.09%) in vertical orientation. A flat square evaporator having a bottom area of 30 mm × 30 mm and a height of 15 mm is used in the present study. The effect of heat input on the thermal resistance, evaporation and condensation heat transfer coefficient is experimentally investigated. The results showed that a reduction in the evaporator thermal resistance of 26.45% is achieved with 0.09 volume percentage of silver nanoparticles when compared with that of water. Further an enhancement in the convective heat transfer coefficient of 25.23% has been observed with the same volume concentration of silver nanoparticles. Addition of small amount of nanoparticles enhanced the operating range of heat pipe beyond 500 W and without the occurrence of any dry out conditions. From the outcome of this study, it is concluded that the compact loop heat pipe with flat square evaporator can be used for thermal control of electronic equipments with limited space.


Sign in / Sign up

Export Citation Format

Share Document