Effect of Breakout Angle on Tripod Injection Hole Geometries on Flat Plate Film Cooling

Author(s):  
Christopher LeBlanc ◽  
Sridharan Ramesh ◽  
Srinath Ekkad ◽  
Mary Anne Alvin

In this study, effect of breakout angle of side holes from the main hole in a tripod hole design on film cooling performance is evaluated on a flat plate surface with steady-state IR (infrared thermography) technique. The designs are compared a cylindrical hole design inclined at 30° from the surface with pitch-to-diameter ratio of 3.0 and a shaped hole design, which is identical to the cylindrical hole design with the addition of adding a 10° flare and laydown to the exit on the mainstream surface. The two tripod hole designs are one where the two side holes, also of the same diameter, branch from the root at a 15° angle while maintaining the same 30° inclination as the cylindrical and shaped designs witha pitch-to-diameter ratio between the main holes for this design is 6.0. The other tripod hole design is a modified tripod hole design that increases the branch angle to 30°, which has the added effect of increasing the pitch-to-diameter ratio between the main holes to 7.5. Two secondary fluids — air and carbon-dioxide — were used to study the effects of coolant-to-mainstream density ratio (DR = 0.95 and 1.45) on film cooling effectiveness. Several blowing ratios in the range 0.5–4.0 were investigated independently at the two density ratios. Results show that the tripod hole design provides similar film cooling effectiveness as the shaped hole case with overall reduced coolant usage. Increasing the breakout angle from 15° to 30° reduces overall cooling effectiveness but increases jet-to-jet interactions.

Author(s):  
Diganta P. Narzary ◽  
Christopher LeBlanc ◽  
Srinath Ekkad

Film cooling performance of two hole geometries is evaluated on a flat plate surface with steady-state IR (infrared thermography) technique. The base geometry is a simple cylindrical hole design inclined at 30° from the surface with pitch-to-diameter ratio of 3.0. The second geometry is an anti-vortex design where the two side holes, also of the same diameter, branch out from the root at 15° angle. The pitch-to-diameter ratio is 6.0 between the main holes. The mainstream Reynolds number is 3110 based on the coolant hole diameter. Two secondary fluids — air and carbon-dioxide — were used to study the effects of coolant-to-mainstream density ratio (DR = 0.95 and 1.45) on film cooling effectiveness. Several blowing ratios in the range 0.5 –4.0 were investigated independently at the two density ratios. Results indicate significant improvement in effectiveness with anti-vortex holes compared to cylindrical holes at all the blowing ratios studied. At any given blowing ratio, the anti-vortex hole design uses 50% less coolant and provides at least 30–40% higher cooling effectiveness. The use of relatively dense secondary fluid improves effectiveness immediately downstream of the anti-vortex holes but leads to poor performance downstream.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Christopher LeBlanc ◽  
Diganta P. Narzary ◽  
Srinath Ekkad

Improved film cooling performance and coolant flow usage have a significant effect on overall engine performance. In the current study, film cooling performance of an improved antivortex or tripod hole geometry is evaluated on a flat plate surface with steady-state IR (infrared thermography) technique and compared to traditional baseline geometry. The baseline geometry is a simple cylindrical hole design inclined at 30 deg from the surface with pitch-to-diameter ratio of 3.0. The proposed improvement is a tripod design where the two side holes, also of the same diameter, branch out from the root of the main hole at 15 deg angle with a larger pitch-to-diameter ratio of 6.0 between the main holes. The third geometry studied is the same tripod design embedded in a trench to enhance two-dimensional film performance. The mainstream Reynolds number is 3110 based on the coolant hole inlet diameter. Two secondary fluids, air and carbon dioxide, were used to study the effects of coolant-to-mainstream density ratio (DR = 0.95 and 1.45) on film cooling effectiveness. Several blowing ratios in the range 0.5–4.0 were investigated independently at the two density ratios. Results indicate significant improvement in effectiveness with the tripod holes compared to cylindrical holes at all the blowing ratios studied. The trenched design shows improved effectiveness in the trench region and reduced effectiveness in the downstream region. At any given blowing ratio, the tripod hole designs use 50% less coolant and provide at least 30%–40% overall averaged higher cooling effectiveness. The use of relatively dense secondary fluid improves effectiveness immediately downstream of the antivortex holes but leads to poor performance downstream.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Jiaxu Yao ◽  
Jin Xu ◽  
Ke Zhang ◽  
Jiang Lei ◽  
Lesley M. Wright

The film cooling effectiveness distribution and its uniformity downstream of a row of film cooling holes on a flat plate are investigated by pressure sensitive paint (PSP) under different density ratios. Several hole geometries are studied, including streamwise cylindrical holes, compound-angled cylindrical holes, streamwise fan-shape holes, compound-angled fan-shape holes, and double-jet film-cooling (DJFC) holes. All of them have an inclination angle (θ) of 35 deg. The compound angle (β) is 45 deg. The fan-shape holes have a 10 deg expansion in the spanwise direction. For a fair comparison, the pitch is kept as 4d for the cylindrical and the fan-shape holes, and 8d for the DJFC holes. The uniformity of effectiveness distribution is described by a new parameter (Lateral-Uniformity, LU) defined in this paper. The effects of density ratios (DR = 1.0, 1.5 and 2.5) on the film-cooling effectiveness and its uniformity are focused. Differences among geometries and effects of blowing ratios (M = 0.5, 1.0, 1.5, and 2.0) are also considered. The results show that at higher density ratios, the lateral spread of the discrete-hole geometries (i.e., the cylindrical and the fan-shape holes) is enhanced, while the DJFC holes is more advantageous in film-cooling effectiveness. Mostly, a higher lateral-uniformity is obtained at DR = 2.5 due to better coolant coverage and enhanced lateral spread, but the effects of the density ratio on the lateral-uniformity are not monotonic in some cases. Utilizing the compound angle configuration leads to an increased lateral-uniformity due to a stronger spanwise motion of the jet. Generally, with a higher blowing ratio, the lateral-uniformity of the discrete-hole geometries decreases due to narrower traces, while that of the DJFC holes increases due to a stronger spanwise movement.


Author(s):  
Yingjie Zheng ◽  
Ibrahim Hassan

This paper presents experimental flow field investigations of a film cooling scheme, referred to as nozzle scheme, on a flat plate using stereo PIV. The nozzle scheme has a cylindrical hole and internal obstacles to change the velocity distribution near the hole exit and hence the jet-mainstream interaction. Counter-rotating vortex pair (CRVP) is known to be one of the detrimental effects that affect the film cooling effectiveness. Previous CFD simulations demonstrated nozzle hole’s capability of reducing CRVP strength and enhancing film cooling effectiveness in comparison with a normal cylindrical hole. The present study examines the nozzle hole flow filed experimentally at blowing ratio ranged from 0.5 to 2.0 and compares with cylindrical hole. The experiments were conducted in a low-speed wind tunnel with a mainstream Reynolds number of 115,000 and the density ratio was 1.0 during all the investigations. The experimental results show that nozzle hole reduces streamwise vorticity of CRVP by an average of 55% at low blowing ratio, and 34%–40% at high blowing ratios. The velocity field and vorticity field of nozzle jet are compared with cylindrical jet. The result reveals that the nozzle jet forms a round bulk in contrast to the kidney shape jet core in cylindrical hole case. In addition, it is found that CRVP strength may not be a primary contributor to the jet lift-off.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3573
Author(s):  
Soo-In Lee ◽  
Jin-Young Jung ◽  
Yu-Jin Song ◽  
Jae-Su Kwak

In this study, the effect of mainstream velocity on the optimization of a fan-shaped hole on a flat plate was experimentally investigated. The experiment was conducted by changing the forward expansion angle (βfwd), lateral expansion angle (βlat), and metering length ratio (Lm/D) of the film-cooling hole. A total of 13 cases extracted using the Box–Behnken method were considered to examine the effect of the shape parameters of the film-cooling hole under a 90 m/s mainstream velocity condition, and the results were compared with the results derived under a mainstream velocity of 20 m/s. One density ratio (DR = 2.0) and a blowing ratio (M) ranging from 1.0 to 2.5 were considered, and the pressure-sensitive paint (PSP) technique was applied for the film-cooling effectiveness (FCE). As a result of the experiment, the optimized hole showed a 49.3% improvement in the overall averaged FCE compared to the reference hole with DR = 2.0 and M = 2.0. As the blowing ratio increased, the hole exit area tended to increase, and this tendency was the same as that in the 20 m/s mainstream condition.


Author(s):  
Ashutosh Kumar Singh ◽  
Kuldeep Singh ◽  
Dushyant Singh ◽  
Niranjan Sahoo

Abstract The large eddy simulations (LES) are performed to access the film cooling performance of cylindrical and reverse shaped hole for forward and reverse injection configurations. In the case of reverse/backward injection, the secondary flow is injected in such a way that its axial velocity component is in the direction opposite to mainstream flow. The study is carried out for a blowing ratio (M = 1), density ratio (DR = 2.42), and injection angle (α = 35 deg). Formation of counter-rotating vortex pair (CRVP) is one of the major issues in the film cooling. This study revealed that the CRVP found in the case of forward cylindrical hole which promotes coolant jet “liftoff” is completely mitigated in the case of the reverse shaped hole. The coolant coverage for reverse cylindrical and reverse shaped holes is uniform and higher. The reverse shaped hole shows promising results among investigated configurations. The lateral averaged film cooling effectiveness of reverse shaped hole is 1.16–1.42 times higher as compared to the forward shaped holes. The improvement in the lateral averaged film cooling effectiveness of reverse cylindrical hole (RCH) injection over forward cylindrical hole (FCH) injection is 1.33–2 times.


Author(s):  
Nian Wang ◽  
Mingjie Zhang ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

This study investigates the combined effects of blowing ratio and density ratio on flat plate film cooling effectiveness from two-row of compound angled cylindrical holes. Two arrangements of two-row compound angled cylindrical holes are tested: the first row and second row are oriented in staggered but same compound angled direction (β = +45° for the first row, +45° for the second row); the first row and second row are oriented in inline but opposite direction (β = +45° for the first row, −45° for the second row). Each cooling hole is 4 mm in diameter with an inclined angle 30°. The streamwise distance between the two rows is fixed at 4d and the spanwise pitch between the two holes (p) is 4d, 6d, and 8d, respectively. The experiments are performed at four blowing ratios (M = 0.5, 1.0, 1.5, 2.0) and three density ratios (DR = 1.0, 1.5, 2.0). The free stream turbulence intensity is kept at 6%. Detailed film cooling effectiveness distributions are obtained using the steady state pressure-sensitive paint (PSP) technique. The detailed film cooling effectiveness contours are presented and the spanwise averaged film effectiveness results are compared over the range of flow parameters. Film cooling effectiveness correlations are developed for both inline and staggered compound angled cylindrical holes. The results provide baseline information for the flat plate film cooling analysis with two-row of compound angled cylindrical holes.


Author(s):  
Jiaxu Yao ◽  
Jin Xu ◽  
Ke Zhang ◽  
Jiang Lei ◽  
Lesley M. Wright

Film cooling effectiveness distribution and its uniformity downstream of a row of film cooling holes on a flat plate are investigated by Pressure Sensitive Paint (PSP) under different density ratios. Several hole geometries are studied, including a streamwise cylindrical hole, a compound-angled cylindrical hole, a streamwise fan-shape hole, a compound-angled fan-shape hole, and double-jet film-cooling (DJFC) holes. All of them have an inclination angle (θ) of 35°.The compound angle (β) is 45°. The fan-shape hole has a 10° expansion in the spanwise direction. In order to have a fair comparison, the pitches are kept as 4d for the cylindrical and the fan-shape holes, and 8d for the double-jet film-cooling holes. The investigated uniformity of effectiveness distribution is described by a new parameter (Lateral-Uniformity, LU) defined in this paper. Effects of density ratios (DR = 1.0, 1.5 and 2.5) on film-cooling effectiveness and its uniformity are focused. Differences among geometries and effects of blowing ratios (M = 0.5, 1.0, 1.5, and 2.0) are also considered. Results show that at higher density ratios, the lateral spread for discrete-hole geometries (i.e., the cylindrical and the fan-shape holes) is enhanced, and the DJFC holes is more advantageous, and the high effectiveness region near the downstream hole exit is larger. Mostly, increased lateral-uniformity is obtained at DR = 2.5 due to better coolant coverage and enhanced lateral spread, but the effects of density ratios on lateral-uniformity are not monotonic in some cases. Utilizing compound angle configuration leads to increased lateral-uniformity due to stronger spanwise motion of the jet. Generally, with higher blowing ratio, the lateral-uniformity for the discrete-hole geometries decreases due to narrower traces, while it for the DJFC holes increases due to stronger spanwise movement.


Author(s):  
Lesley M. Wright ◽  
Stephen T. McClain ◽  
Charles P. Brown ◽  
Weston V. Harmon

A novel, double hole film cooling configuration is investigated as an alternative to traditional cylindrical and fanshaped, laidback holes. This experimental investigation utilizes a Stereo-Particle Image Velocimetry (S-PIV) to quantitatively assess the ability of the proposed, double hole geometry to weaken or mitigate the counter-rotating vortices formed within the jet structure. The three-dimensional flow field measurements are combined with surface film cooling effectiveness measurements obtained using Pressure Sensitive Paint (PSP). The double hole geometry consists of two compound angle holes. The inclination of each hole is θ = 35°, and the compound angle of the holes is β = ± 45° (with the holes angled toward one another). The simple angle cylindrical and shaped holes both have an inclination angle of θ = 35°. The blowing ratio is varied from M = 0.5 to 1.5 for all three film cooling geometries while the density ratio is maintained at DR = 1.0. Time averaged velocity distributions are obtained for both the mainstream and coolant flows at five streamwise planes across the fluid domain (x/d = −4, 0, 1, 5, and 10). These transverse velocity distributions are combined with the detailed film cooling effectiveness distributions on the surface to evaluate the proposed double hole configuration (compared to the traditional hole designs). The fanshaped, laidback geometry effectively reduces the strength of the kidney-shaped vortices within the structure of the jet (over the entire range of blowing ratios considered). The three-dimensional velocity field measurements indicate the secondary flows formed from the double hole geometry strengthen in the plane perpendicular to the mainstream flow. At the exit of the double hole geometry, the streamwise momentum of the jets is reduced (compared to the single, cylindrical hole), and the geometry offers improved film cooling coverage. However, moving downstream in the steamwise direction, the two jets form a single jet, and the counter-rotating vortices are comparable to those formed within the jet from a single, cylindrical hole. These strong secondary flows lift the coolant off the surface, and the film cooling coverage offered by the double hole geometry is reduced.


1996 ◽  
Vol 118 (2) ◽  
pp. 278-284 ◽  
Author(s):  
M. Y. Jabbari ◽  
K. C. Marston ◽  
E. R. G. Eckert ◽  
R. J. Goldstein

Film cooling performance for injection through discrete holes in the endwall of a turbine blade is investigated. The effectiveness is measured at 60 locations in the region covered by injection. Three nominal blowing rates, two density ratios, and two approaching flow Reynolds numbers are examined. Analysis of the data reveals that even 60 locations are insufficient for the determination of the field of film cooling effectiveness with its strong local variations. Visualization of the traces of the coolant jets on the endwall surface, using ammonium-diazo-paper, provides useful qualitative information for the interpretation of the measurements, revealing the paths and interaction of the jets, which change with blowing rate and density ratio.


Sign in / Sign up

Export Citation Format

Share Document