Simultaneous Tracking of Vocal Fold Superior Surface Motion and Glottal Jet Dynamics

Author(s):  
Joseph R. Nielson ◽  
David J. Daily ◽  
Tadd T. Truscott ◽  
Georg Luegmair ◽  
Michael Döllinger ◽  
...  

Synthetic aperture particle image velocimetry is used with an excised human vocal fold model to study the airflow between the vocal folds during voice production. A whole field, time-resolved, 3D description of the flow is presented over multiple cycles of vocal fold oscillations. The 3D flow data are synchronized with a 3D reconstruction of the superior surface of the vocal folds and with the subglottal pressure signal.

2021 ◽  
Vol 917 ◽  
Author(s):  
Everest G. Sewell ◽  
Kevin J. Ferguson ◽  
Vitaliy V. Krivets ◽  
Jeffrey W. Jacobs

Abstract


1997 ◽  
Vol 106 (7) ◽  
pp. 533-543 ◽  
Author(s):  
Steven M. Zeitels ◽  
Glenn W. Bunting ◽  
Robert E. Hillman ◽  
Traci Vaughn

Reinke's edema (RE) has been associated typically with smoking and sometimes with vocal abuse, but aspects of the pathophysiology of RE remain unclear. To gain new insights into phonatory mechanisms associated with RE pathophysiology, weused an integrated battery of objective vocal function tests to analyze 20 patients (19 women) who underwent phonomicrosurgical resection. Preoperative stroboscopic examinations demonstrated that the superficial lamina propria is distended primarily on the superior vocal fold surface. Acoustically, these individuals have an abnormally low average speaking fundamental frequency (123 Hz), and they generate abnormally high average subglottal pressures (9.7 cm H20). The presence of elevated aerodynamic driving pressures reflects difficulties in producing vocal fold vibration that are most likely the result of mass loading associated with RE, and possibly vocal hyperfunction. Furthermore, it is hypothesized that in the environment of chronic glottal mucositis secondary to smoking and reflux, the cephalad force on the vocal folds by the subglottal driving pressure contributes to the superior distention of the superficial lamina propria. Surgical reduction of the volume of the superficial lamina propria resulted in a significant elevation in fundamental frequency (154 Hz) and improvement in perturbation measures. In almost all instances, both the clinician and the patient perceived the voice as improved. However, these patients continued to generate elevated subglottal pressure (probably a sign of persistent hyperfunction) that was accompanied by visually observed supraglottal strain despite the normalsized vocal folds. This finding suggests that persistent hyperfunctional vocal behaviors may contribute to postsurgical RE recurrence if therapeutic strategies are not instituted to modify such behavior.


1988 ◽  
Vol 31 (3) ◽  
pp. 338-351 ◽  
Author(s):  
Martin Rothenberg ◽  
James J. Mahshie

A number of commercial devices for measuring the transverse electrical conductance of the thyroid cartilage produce waveforms that can be useful for monitoring movements within the larynx during voice production, especially movements that are closely related to the time-variation of the contact between the vocal folds as they vibrate. This paper compares the various approaches that can be used to apply such a device, usually referred to as an electroglottograph, to the problem of monitoring the time-variation of vocal fold abduction and adduction during voiced speech. One method, in which a measure of relative vocal fold abduction is derived from the duty cycle of the linear-phase high pass filtered electroglottograph waveform, is developed in detail.


Author(s):  
Jianjun Feng ◽  
Friedrich-Karl Benra ◽  
Hans Josef Dohmen

The truly time-variant unsteady flow in a low specific speed radial diffuser pump stage has been investigated by time-resolved Particle Image Velocimetry (PIV) measurements. The measurements are conducted at the midspan of the blades for the design condition and also for some severe part-load conditions. The instantaneous flow fields among different impeller channels are analyzed and compared in detail, and more attention has been paid to flow separations at part-load conditions. The analysis of the measured results shows that the flow separations at two adjacent impeller channels are quite different at some part-load conditions. The separations generally exhibit a two-channel characteristic.


2016 ◽  
Vol 811 ◽  
pp. 37-50 ◽  
Author(s):  
Giuseppe A. Rosi ◽  
David E. Rival

A constantly accelerating circular plate was investigated towards understanding the effect of non-stationarity on shear-layer entrainment and topology. Dye visualizations and time-resolved particle image velocimetry measurements were collected for normalized accelerations spanning three orders of magnitude. Increasing acceleration acts to organize shear-layer topology. Specifically, the Kelvin–Helmholtz instabilities within the shear layer better adhered to a circular path and exhibited consistent and repeatable spacing. Normalized starting-vortex circulation was observed to collapse with increasing acceleration, which one might not expect due to increased levels of mixing at higher instantaneous Reynolds numbers. The entrainment rate was shown to increase nonlinearly with increasing acceleration. This was attributed to closer spacing between instabilities, which better facilitates the roll-up of fluid between the shear layer and vortex core. The shear-layer organization observed at higher accelerations was associated with smaller spacings between instabilities. Specifically, analogous point-vortex simulations demonstrated that decreasing the spacing between instabilities acts to localize and dampen perturbations within an accelerating shear layer.


Sign in / Sign up

Export Citation Format

Share Document