Reinke's Edema: Phonatory Mechanisms and Management Strategies

1997 ◽  
Vol 106 (7) ◽  
pp. 533-543 ◽  
Author(s):  
Steven M. Zeitels ◽  
Glenn W. Bunting ◽  
Robert E. Hillman ◽  
Traci Vaughn

Reinke's edema (RE) has been associated typically with smoking and sometimes with vocal abuse, but aspects of the pathophysiology of RE remain unclear. To gain new insights into phonatory mechanisms associated with RE pathophysiology, weused an integrated battery of objective vocal function tests to analyze 20 patients (19 women) who underwent phonomicrosurgical resection. Preoperative stroboscopic examinations demonstrated that the superficial lamina propria is distended primarily on the superior vocal fold surface. Acoustically, these individuals have an abnormally low average speaking fundamental frequency (123 Hz), and they generate abnormally high average subglottal pressures (9.7 cm H20). The presence of elevated aerodynamic driving pressures reflects difficulties in producing vocal fold vibration that are most likely the result of mass loading associated with RE, and possibly vocal hyperfunction. Furthermore, it is hypothesized that in the environment of chronic glottal mucositis secondary to smoking and reflux, the cephalad force on the vocal folds by the subglottal driving pressure contributes to the superior distention of the superficial lamina propria. Surgical reduction of the volume of the superficial lamina propria resulted in a significant elevation in fundamental frequency (154 Hz) and improvement in perturbation measures. In almost all instances, both the clinician and the patient perceived the voice as improved. However, these patients continued to generate elevated subglottal pressure (probably a sign of persistent hyperfunction) that was accompanied by visually observed supraglottal strain despite the normalsized vocal folds. This finding suggests that persistent hyperfunctional vocal behaviors may contribute to postsurgical RE recurrence if therapeutic strategies are not instituted to modify such behavior.

2005 ◽  
Vol 114 (11) ◽  
pp. 847-852 ◽  
Author(s):  
David A. Berry ◽  
Haven Reininger ◽  
Fariborz Alipour ◽  
Diane M. Bless ◽  
Charles N. Ford

Objectives: A systematic study of the influence of vocal fold scarring on phonation was conducted. In particular, phonatory variables such as fundamental frequency, oral acoustic intensity, and phonation threshold pressure (PTP) were investigated as a function of the size and position of the laryngeal scar. Methods: By means of a finite element model of vocal fold vibration, the viscoelastic properties of both normal and scarred vocal fold mucosae were simulated on the basis of recent rheological data obtained from rabbit and canine models. Results: The study showed that an increase in the viscoelasticity of the scarred mucosa resulted in an increase in fundamental frequency, an increase in PTP, and a decrease in oral acoustic intensity. With regard to positioning of the scar, the PTP increased most significantly when the scar was within ±2 mm of the superior-medial junction of the vocal folds. Conclusions: The systematic data obtained in this investigation agree with the general clinical experience. In the future, these findings may be further validated on human subjects as newly emerging technologies such as linear skin rheometry and optical coherence tomography allow the histologic and viscoelastic properties of the normal and scarred vocal fold mucosae to be measured in the clinic.


1994 ◽  
Vol 103 (10) ◽  
pp. 817-821 ◽  
Author(s):  
Nancy Pearl Solomon ◽  
Kang Liu ◽  
Tzu-Yu Hsiao ◽  
Erich S. Luschei ◽  
Tsu-Ching Fu ◽  
...  

The relation between subglottic pressure and the fundamental frequency of vocal fold vibration was studied by means of evoked phonation in an in vivo canine model. The evoked-phonation model involved electrical stimulation of the midbrain that resulted in consistent responses by respiratory and laryngeal musculature, accompanied by phonation. The dynamic stiffness properties of the vocal folds, especially the “cover,” were investigated by delivering various amounts of air pressure to the larynx from an opening in the trachea. The fundamental frequency of vocal fold vibration increased linearly with subglottic pressure. The slopes ranged from 22.4 to 118.7 Hz per kilopascal in 7 animals. The results indicated that the dependence of fundamental frequency on subglottic pressure is a passive mechanical phenomenon.


Author(s):  
Mark P. Ottensmeyer ◽  
Michael Yip ◽  
Conor J. Walsh ◽  
James B. Kobler ◽  
James T. Heaton ◽  
...  

Our society depends on communication, the most natural form of which is speech. Trauma, disease and the normal aging process will cause many to suffer degraded or lost vocal fold function, and it has been observed that this number is growing [1]. The vocal folds are the vibrating structures in the larynx that enable us to generate voice, from speech to opera singing. The vibrating portions of the folds consist of an external 0.1mm thick layer of epithelial cells, a soft, gel-like 0.5mm thick layer called the lamina propria (LP), a 0.3mm thick vocal ligament and an underlying thyroarytenoid muscle [2]. The fundamental frequency of speech in men is in the 100–150Hz range, and between 200 and 300Hz in women [3].


2005 ◽  
Vol 114 (9) ◽  
pp. 671-676 ◽  
Author(s):  
James A. Burns ◽  
Steven M. Zeitels ◽  
R. Rox Anderson ◽  
James B. Kobler ◽  
Mark C. Pierce ◽  
...  

Objectives: Discerning the layered microstructure of the vocal folds is critical for effective phonomicrosurgery. Optical coherence tomography (OCT), a noncontact, noninvasive technology that provides cross-sectional images by means of backscattered light, offers the potential for delineating these layers in vivo. Methods: The glottal mucosa of 3 human cadaver larynges was imaged with conventional OCT and polarization-sensitive OCT (PS-OCT). Images were obtained through the epithelium and lamina propria. Results: Although the superficial layer of the lamina propria appeared quite homogeneous, the outer surface of the superficial lamina propria was correlated with an increase in backscatter with OCT. The superficial lamina propria and vocal ligament were correlated with a marked increase in tissue birefringence with PS-OCT. Conclusions: This preliminary study demonstrates the capacity of OCT and PS-OCT for visualizing the layered microstructure of the vocal fold mucosa. We believe that these imaging techniques will have applications in the exploration of solutions to vocal fold scarring and in imaging vocal fold disorders in the clinic and operating room.


2002 ◽  
Vol 111 (10) ◽  
pp. 902-908 ◽  
Author(s):  
Renée Speyer ◽  
Pieter A. Kempen ◽  
George Wieneke ◽  
Willem Kersing ◽  
Elham Ghazi Hosseini ◽  
...  

Objective measurements derived from digitized laryngeal stroboscopic images were used to demonstrate changes in vocal fold vibration and in the size of benign lesions after 3 months of voice therapy. Forty chronically dysphonic patients were studied. By means of a rigid stroboscope, pretreatment and posttreatment recordings were made of the vocal folds at rest and under stroboscopic light during phonation. From each recording, images of the positions at rest and during vibration at maximal opening and at maximal closure were digitized. The surface areas of any lesions and of the glottal gap were independently measured in the digitized images by 2 experienced laryngologists. Referential distances were determined in order to compensate for discrepancies in magnification in the various recordings. After 3 months of voice therapy, significant improvement in lesion size and degree of maximal closure during vibration could be demonstrated in about 50% of the patients. The degree of maximal opening did not prove to be a significant parameter.


1996 ◽  
Vol 105 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Agnieszka S. Pawlak ◽  
Elizabeth Hammond ◽  
Thomas Hammond ◽  
Steven D. Gray

We evaluated the proteoglycan composition of normal vocal folds using immunocytochemical techniques. Frozen sections of 14 normal cadaveric vocal folds were obtained within 12 hours of death and sectioned immediately. Vocal fold sections were stained with antibodies against keratan sulfate, chondroitin sulfate, heparan sulfate proteoglycan (HSPG), decorin, and hyaluronate receptor. We found that the lamina propria has diffuse staining of fibrillar components with keratan sulfate and decorin. Intense staining was observed in the vocal ligament area with keratan sulfate. The HSPG was localized to the basement membrane zone. Chondroitin sulfate, HSPG, and hyaluronate receptor were detected in the cytoplasm of interstitial cells with immunocytochemical characteristics of macrophages. The keratan sulfate distribution suggests that fibromodulin may be significant in normal vocal folds. Production of HSPG and probably versican occurs in macrophages and fibroblasts in the lamina propria.


2002 ◽  
Vol 111 (6) ◽  
pp. 537-541 ◽  
Author(s):  
Tzu-Yu Hsiao ◽  
Chia-Ming Liu ◽  
Kai-Nan Lin

The mucus layer on the vocal folds was examined by videostrobolaryngoscopy in patients with laryngeal tension-fatigue syndrome, a chronic functional dysphonia due to vocal abuse and misuse. Besides the findings in previous reports (such as abnormal glottal closure, phase or amplitude asymmetry, and the irregular mucosal wave), the vocal folds during vibration had an uneven mucus surface. The occurrence of an uneven mucus layer on vocal folds was significantly greater in subjects with this voice disorder (83% or 250 of 301 patients in this series) than in those without voice disorders (18.5% or 5 of 27). The increase of mucus viscosity, mucus aggregation, and the formation of rough surfaces on the vocal folds alter the mechanical properties that contribute to vibration of the cover of the vocal folds, and thereby worsen the symptoms of dysphonia in patients with laryngeal tension-fatigue syndrome.


Author(s):  
Taehong Cho ◽  
Doris Mücke

Prosodic research in speech production usually focuses on the way the prosodic structure influences the phonetic implementation of segmental and suprasegmental features. The realization of a tone, for instance, involves not only dynamic changes so as to regulate the vocal fold vibration to produce f0 contours, but also the movement of articulators to simultaneously produce consonants and vowels. Articulatory measuring techniques help us to directly observe how these two systems are coordinated in the spatio-temporal dimension. A number of such techniques are discussed, along with examples indicating how each technique may be or has been used to study various aspects of prosody. They include laryngoscopy and electroglottography to examine laryngeal events associated with vocal fold vibration; systems such as electromagnetic articulography, an optoelectronic device, electropalatography, and ultrasound systems to explore supralaryngeal articulatory events; and aerodynamic measurement systems to record oral/subglottal pressure and oral/nasal flow.


1996 ◽  
Vol 105 (5) ◽  
pp. 341-347 ◽  
Author(s):  
Erik S. Kass ◽  
Robert E. Hillman ◽  
Steven M. Zeitels

Phonomicrosurgery is optimized by maximally preserving the vocal fold's layered microstructure (laminae propriae). The technique of submucosal infusion of saline and epinephrine into the superficial lamina propria (SLP) was examined to delineate how, when, and why it was helpful toward this surgical goal. A retrospective review revealed that the submucosal infusion technique was used to enhance the surgery in 75 of 152 vocal fold procedures that were performed over the last 2 years. The vocal fold epithelium was noted to be adherent to the vocal ligament in 29 of the 75 cases: 19 from previous surgical scarring, 4 from cancer, 3 from sulcus vocalis, 2 from chronic hemorrhage, and 1 from radiotherapy. The submucosal infusion technique was most helpful when the vocal fold epithelium required resection and/or when extensive dissection in the SLP was necessary. The infusion enhanced the surgery by vasoconstriction of the microvasculature in the SLP, which improved visualization during cold-instrument tangential dissection. Improved visualization facilitated maximal preservation of the SLP, which is necessary for optimal pliability of the overlying epithelium. The infusion also improved the placement of incisions at the perimeter of benign, premalignant, and malignant lesions, and thereby helped preserve epithelium uninvolved by the disorder.


Author(s):  
Byron D. Erath ◽  
Matías Zañartu ◽  
Sean D. Peterson ◽  
Michael W. Plesniak

Voiced speech is initiated as air is expelled from the lungs and passes through the vocal tract inciting self-sustained oscillations of the vocal folds. While various approaches exist for investigating both normal and pathological speech, the relative inaccessibility of the vocal folds make multi-mass speech models an attractive alternative. Their behavior has been benchmarked with excised larynx experiments, and they have been used as analysis tools for both normal and disordered speech, including investigations of paralysis, vocal tremor, and breathiness. However, during pathological speech, vocal fold motion is often unstructured, resulting in chaotic motion and a wealth of nonlinear phenomena. Unfortunately, current methodologies for multi-mass speech models are unable to replicate the nonlinear vocal fold behavior that often occurs in physiological diseased voice for realistic values of subglottal pressure.


Sign in / Sign up

Export Citation Format

Share Document