Wear and Mechanical Properties of Aluminum Alloy Based Hybrid Composites [(SiC+Gr) and (SiC+Al2O3)] Fabricated by Friction Stir Processing

Author(s):  
A. Kumar ◽  
A. Devaraju ◽  
B. Kotiveerachari

In this investigation, the influence of tool rotational speed on wear and mechanical properties of Aluminum alloy based surface hybrid composites fabricated via Friction stir processing (FSP) was studied. The fabricated surface hybrid composites have been examined by optical microscope for dispersion of reinforcement particles. Microstructures of all the surface hybrid composites revealed that the reinforcement particles (SiC, Gr and Al2O3) are uniformly dispersed in the nugget zone. It is observed that the microhardness is decreased with increasing the rotational speed and exhibited higher microhardness value in Al-SiC/Al2O3 surface hybrid composite at a rotational speed of 900 rpm, due to presence and pining effect of hard SiC and Al2O3 particles. It is also observed that high wear resistance exhibited in the Al-SiC/Gr surface hybrid composites at a rotational speed of 900 rpm due to presence of SiC and Gr acted as load bearing elements and solid lubricant respectively. The observed wear and mechanical properties have been correlated with microstructures and worn morphology.

2014 ◽  
Vol 496-500 ◽  
pp. 110-113
Author(s):  
Dong Gao Chen ◽  
Jin He Liu ◽  
Zhi Hua Ma ◽  
Wu Lin Yang

The7A05 aluminum alloy of the 10mm thickness was welded by the friction stir welding. The microstructure and mechanical Properties of the welded joint was researched by the optical microscope, etc. The results showed: the microstructure of the weld nugget zone and the thermal mechanically affected zone were refined as the welding speed increasing when the rotate speed is constant. As the welding speed increasing the strength of extension of the welded joint is increasing at first and then stable basically. but the yield strength had no obvious change.


2010 ◽  
Vol 654-656 ◽  
pp. 1428-1431 ◽  
Author(s):  
Margarita Vargas ◽  
Sri Lathabai

Friction stir processing (FSP) was performed on AA 7075-T6, a heat treatable high strength Al-Zn-Mg-Cu alloy. The two main FSP parameters, the tool rotational and travel speed, were varied systematically in order to understand their influence on the microstructure and mechanical properties of the processed zone. At a given rotational speed, increasing the travel speed increased the microhardness of the nugget (stir) zone; for a given travel speed there appeared to be an optimum rotational speed which resulted in the highest microhardness. The range of FSP parameters used did not significantly influence the nugget zone grain size. It is suggested that the observed mechanical properties are a result of the complex interactions between the FSP thermo-mechanical effects and the processes of dissolution, coarsening and re-precipitation of the strengthening precipitates in this alloy.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 279 ◽  
Author(s):  
Zhongwen Wu ◽  
Chunping Huang ◽  
Fencheng Liu ◽  
Chun Xia ◽  
Liming Ke

Repairing damaged parts using proper repairing methods has become an important means to reduce manufacturing and operational costs and prolong the service life of 34CrNiMo6 steel structures. In the conventional fusion repairing method, welding wire and powder are often used as filling materials. Filling materials are often expensive or difficult to find. Some metallurgical issues (such as solidification crack, higher distortion) were also found with these methods. At the same time, most of the equipment that requires welding wire and powder is expensive. In this study, a new method based on friction stir processing (FSP) was successfully employed to repair 34CrNiMo6 steel, using a block as filling material. Filling blocks are much cheaper than conventional fusion repair consumables. As a result of solid-state repair, this method can also avoid the metallurgical issues of fusion repair. The microstructure and mechanical properties of the repaired samples were investigated using OM (Optical Microscope), SEM, EDS (Energy Dispersive Spectroscopy), XRD, and a Vickers hardness electronic universal tensile tester. The results showed that 34CrNiMo6 steel was successfully repaired by this method, with no defect. Tensile tests showed that the maximum ultimate strength (UTS) was 900 MPa and could reach 91.8% of that of the substrate. The fracture mode of the tensile samples was ductile/brittle mixed fracture. Hence, the repairing method based on FSP appears to be a promising method for repairing castings.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ch. Mohana Rao ◽  
K. Mallikarjuna Rao

PurposeThe objective of the paper is to evaluate the fabrication process and to study the influence of process parameters of friction stir processing of 6061-TiB2-Al2O3 Aluminum alloy surface composite on microhardness tensile strength, and microstructure.Design/methodology/approachFriction stir processing method is used for attaining the desired mechanical properties, and selectively processed reinforcements to fabricate the samples. The Taguchi technique was used to optimize rotational speed, travel speed and volume percentage of reinforcement particles to enhance the mechanical properties of 6061-TiB2-Al2O3 Aluminum alloy composite.FindingsThe fabrication of surface composites through FSP allows new inventions in terms of material with enhanced surface layers without changing the base metal.Practical implicationsTo examine the behavior of the surface of the composites in the different zones, the practical implication consists of the use of different characterization techniques like optical microscopy and scanning microscopy for microstructural behavior and the measurement of hardness and tensile tests for mechanical behavior.Originality/valueThe research work consists of tool design and process parameters, which can affect the final product (microstructural changes), and the performance of the modified surface layer behavior was studied and presented.


2013 ◽  
Vol 818 ◽  
pp. 14-19 ◽  
Author(s):  
Vahid Rezazadeh ◽  
Ali Sharbatzadeh ◽  
Ali Hosseinzadeh ◽  
Amir Safari ◽  
Salar Salahi

mproving ductility in metals using friction stir processing (FSP) is a challenging effort and is made by means of a rotating tool inserted in a work piece providing heat transfer and plastic deformation. In this investigation, improving ductility during FSP was determined as a purpose and the microstructure and mechanical properties of nugget zone were investigated during friction stir processing (FSP) of pure copper. Ductility was measured using tensile elongations at a temperature of 20 °C. By varying the traverse speed from 40 to 100 mm/min at rotation speeds of 300 and 600 rpm, the ultrafine grain microstructure was achieved .Defects were observed in rotational speed of 300 rpm. By increasing traverse speed at constant rotational speed of 600 rpm grain size of the nugget zone decreased and ductility increased. Achievable ductility was limited by cavity formation due to lower heat input and deformation in samples with defects.


Sign in / Sign up

Export Citation Format

Share Document