Design and Thermoeconomic Evaluation of a Waste Plant With an Integrated CO2 Chemical Sequestration System for CH4 Production

Author(s):  
Sebastiano Luca Romano ◽  
Enrico Sciubba ◽  
Claudia Toro

Object of this paper is the modelling, process design and simulation of a waste incineration plant integrated with a novel CO2 chemical sequestration system for CH4 production. The main components of the proposed system are: the incineration plant (whose operational data are considered known here), a Sabatier reactor for CH4 production, a post-combustion monoethanolamine (MEA) chemical absorption unit and a H2O electrolyser. Carbon dioxide captured from the waste plant stack gases and hydrogen from water electrolysis feed the Sabatier chemical reactor in a temperature range of 250–450°C. Through the exothermic methanation reaction (CO2 + 4H2 = CH4 + 2H2O + Heat), methane is produced with a conversion yield of 90–95%. Through a perm-selective membrane, hot steam can be extracted from the reactor and recycled to cover about 40% of the MEA regenerating re-boiler duty. The methanation of CO2 is an established carbon capture technique, profitably suitable for waste plants. When the produced methane is burned, the CO2 absorbed in the process returns to the environment, enacting in a global sense a quasi-zero-emissions cycle. The possible integration of the electrolyser with renewable-generated electricity has been investigated to evaluate the storage capacity of electrical energy as “renewable methane”, which from a technical point of view is more suitable than hydrogen to be stored, burned or sent into natural gas pipelines. A thermo-economic analysis is presented to evaluate the exergetic performance of the proposed system and the final cost of products.

2015 ◽  
Vol 142 (21) ◽  
pp. 212425 ◽  
Author(s):  
Thomas Brinzer ◽  
Eric J. Berquist ◽  
Samrat Dutta ◽  
Clinton A. Johnson ◽  
Cullen S. Krisher ◽  
...  

2015 ◽  
Vol 53 (5) ◽  
pp. 454-464 ◽  
Author(s):  
Kenya YAMAMOTO ◽  
Mitsuhiro KUDO ◽  
Heihachiro ARITO ◽  
Yasutaka OGAWA ◽  
Tsutomu TAKATA

2014 ◽  
Vol 659 ◽  
pp. 431-434
Author(s):  
Cătălin George Popovici ◽  
Marius Costel Balan ◽  
Marina Verdeș ◽  
Vasilică Ciocan ◽  
Andrei Burlacu ◽  
...  

One of the effects of technological development of all human societies over the past century is more pronounced increase in energy consumption, but more pronounced dependence on fossil fuel consumption, especially as oil, natural gas and coal.The paper presents a comparative analysis of technical and economic point of view of two systems, the first using the classical system (national electricity grid) and the second using the new unconventional technology with photovoltaic systems for administrative building in rural areas.For correct evaluation of the performance of this systems providing electrical energy requires some assumptions about the consumption of electricity, the solar radiation intensity, the energy cost and the climate zones of the location.


2021 ◽  
Vol 25 (3) ◽  
pp. 4-9
Author(s):  
V.V. Semenov ◽  
V.I. Zhdanov ◽  
I.Yu. Veretennikov ◽  
A.Yu. Hil’

The development of a mobile waste incineration plant designed for the recovery of garbage dumps located near towns and villages, from where the removal of garbage to the city to the incineration plant is not profitable due to the large remoteness of small settlements from the city. The installation has two combustion zones: in the 1st zone, the combustion process of solid municipal waste (MSW) is achieved at temperatures up to 600 °C, and in the second zone – up to 1200 °C. Afterburning of flue gas to reduce the formation of dioxins, furans and soot is provided.


2020 ◽  
Vol 9 (2) ◽  
pp. 125-134
Author(s):  
Kurnia Paranita Kartika ◽  
Riska Dhenabayu

This study aims to design a Solar Home System with an Arduino-based Smart Switching system so that the use of electrical energy generated by solar panels can be adjusted without adding power from other electricity sources, such as PLN. Calculation of Leveled Cost of Energy (LCOE) is used as the basis for the switching process that will be carried out to regulate the use of household appliances that are routinely used, regulate electricity consumption automatically, minimize usage, and calculate the effectiveness of electric power usage. The way SHS works is to collect electrical energy from sunlight, then convert DC voltage to AC so that it can be used to run household electronic equipment. To accommodate the adequacy of electrical power, an automatic adjustment is made for household appliances that are routinely used, namely house lights, which includes setting the lights on and off and the number of lights that can be activated. The advantage of this research is that the SHS system is integrated with the automatic setting of the lights installed in the house so that the number of lights on will adjust the availability of electrical energy in the battery. In addition, with the LCOE method, the level of usage can be calculated so that users can save electricity. From the results of usage testing, it is found that the application of this switching technology provides benefits for users because it is no longer dependent on PLN supply. From an economic point of view, based on the calculation of Leveled Cost of Energy (LCOE), there is a kWh value savings of Rp. 77, - for each kWh price or about 4.53% compared to purchasing electricity with prepaid mode.


Sign in / Sign up

Export Citation Format

Share Document