Reliability Analysis Method for Multi-State Repairable Systems Based on Goal Oriented Methodology

Author(s):  
Xiaojian Yi ◽  
B. S. Dhillon ◽  
Hui-na Mu ◽  
Zhong Zhang ◽  
Peng Hou

This paper proposes a new GO method for repairable systems with multiple unstable operation states. First, multi-state signal flow and multi-state GO operator are defined, respectively. And the formula for calculating state probability of unit with multiple unstable operation states is deduced based on Markov theory. Furthermore, a new function GO operator named Type 19 is created to describe the unit stabilizing property. And its GO operation formulas for reliability analysis are deduced. On this basis, the reliability analysis process of multi-state repairable systems based on the new GO method is formulated. Then, this new GO method is applied in reliability analysis of Hydraulic Oil Supply System of a heavy vehicle. In order to verify the feasibility, advantage and reasonability of the new GO method, its analysis result is compared with those of FTA and the existing GO method for two-state repairable systems. All in all, this paper not only improves the theory of GO method, and widens the application of GO method, but also provides a new approach for reliability analysis of multi-state repairable systems.

Author(s):  
Xiao-Jian Yi ◽  
Jian Shi ◽  
Hui-Na Mu ◽  
Hai-Ping Dong ◽  
Zhong Zhang

This paper proposes a new goal-oriented (GO) method for reliability analysis of repairable systems with multiple-input and multi-function component (MIMFC). First, a new GO operator combination, which is composed of a new function GO operator and a new auxiliary GO operator, is created to represent MIMFC. The new function GO operator named as Type 22 operator is created to represent MIMFC itself, and the auxiliary GO operator named as Type 15B operator is created to represent multi-condition control signals of MIMFC. Then, GO operation formulas of the new GO operator combination are deduced based on logical relationships among inputs, outputs, and the component itself. The reliability analysis process of the new GO method is formulated. Furthermore, this new GO method is applied for the first time in steady availability analysis and qualitative analysis of the fan drive system of a power-shift steering transmission. Finally, the results obtained by the new GO method are compared with the results of fault tree analysis (FTA) and Monte Carlo simulation (MCS), and the comparison results show that this new GO method is reasonable and advantageous in reliability analysis of repairable systems with MIMFC. Moreover, the analysis process shows that it is more advantageous in the aspect of building system models and conducting reliability analysis. Overall, this paper not only improves the basic theory of the GO method and expands the application of the GO method, but it also provides a new approach for reliability analysis of repairable systems with MIMFC.


2018 ◽  
Vol 34 (3) ◽  
pp. 298-332 ◽  
Author(s):  
Xiao-Jian Yi ◽  
Jian Shi ◽  
B.S. Dhillon ◽  
Peng Hou ◽  
Hai-Ping Dong

2012 ◽  
Vol 542-543 ◽  
pp. 1334-1338
Author(s):  
Zhao Han Wang ◽  
Chang Guo Xuan ◽  
Qiang Fu

In order to meet energy conservation and utilization optimization in urban water supply system and ensure water supply time and efficiency, we adopted the projection pursuit autoregression method to establish the projection pursuit autoregression water consumption forecasting model, combined the projection pursuit technique and time-series autoregression analysis method, and better solved the abnormal and nonlinear problems in urban water consumption. The practice proves that the forecasting precision of this model reaches the engineering requirements, and it provides a new approach for water consumption forecasting and analysis.


Author(s):  
Xiao-Jian Yi ◽  
Jian Shi ◽  
Hai-Ping Dong ◽  
Yue-Hua Lai

This paper provides a new goal-oriented (GO) method for reliability analysis of repairable systems with multiple fault modes. First, formulas of operators describing components with multiple fault modes are derived based on Markov process theory. Second, qualitative reliability analysis of such a system is conducted by combining the existing GO method with the Fussell–Vesely method. Third, this new method is applied in reliability analysis of a hydraulic transmission oil supply system. Finally, comparing the study results with fault tree analysis (FTA) and Monte Carlo simulation shows that this new GO method is suitable for reliability analysis of repairable systems with multiple fault modes.


Author(s):  
Xiao-Jian Yi ◽  
Balbir Singh Dhillon ◽  
Jian Shi ◽  
Hui-Na Mu ◽  
Zhong Zhang

This paper presents a new approach for the reliability analysis of vehicle systems by considering typical characteristics based on goal-oriented methodology. First, solutions are proposed for vehicle systems with multiple fault modes, a standby structure at any position, a multiple-input closed-loop feedback link, multiple functions, and multiple conditions for the goal-oriented method. Then, a two-level goal-oriented model and the new rules of goal-oriented operation for such vehicle systems are proposed. Furthermore, the quantitative method and the qualitative method are improved. In addition, the analysis process for these vehicle systems based on the new goal-oriented method is formulated. Finally, this new goal-oriented methodology is applied in the dynamic availability analysis and qualitative analysis of the power-shift steering transmission for a heavy military vehicle. In order to verify the feasibility, the advantages, and the correctness of the new goal-oriented methodology, the results are compared with those from fault tree analysis and Monte Carlo simulations. In general, this study not only improves the theory of the goal-oriented method and widens the application of the goal-oriented method but also provides a new reliability analysis method for such vehicle systems. In addition, the analysis process of the new goal-oriented method shows that the goal-oriented method has advantages in system reliability modeling and system reliability analysis for vehicle systems.


2017 ◽  
Vol 33 (8) ◽  
pp. 2215-2237 ◽  
Author(s):  
Xiao-jian Yi ◽  
Jian Shi ◽  
B.S. Dhillon ◽  
Peng Hou ◽  
Yue-hua Lai

Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 229
Author(s):  
Fangyi Li ◽  
Yufei Yan ◽  
Jianhua Rong ◽  
Houyao Zhu

In practical engineering, due to the lack of information, it is impossible to accurately determine the distribution of all variables. Therefore, time-variant reliability problems with both random and interval variables may be encountered. However, this kind of problem usually involves a complex multilevel nested optimization problem, which leads to a substantial computational burden, and it is difficult to meet the requirements of complex engineering problem analysis. This study proposes a decoupling strategy to efficiently analyze the time-variant reliability based on the mixed uncertainty model. The interval variables are treated with independent random variables that are uniformly distributed in their respective intervals. Then the time-variant reliability-equivalent model, containing only random variables, is established, to avoid multi-layer nesting optimization. The stochastic process is first discretized to obtain several static limit state functions at different times. The time-variant reliability problem is changed into the conventional time-invariant system reliability problem. First order reliability analysis method (FORM) is used to analyze the reliability of each time. Thus, an efficient and robust convergence hybrid time-variant reliability calculation algorithm is proposed based on the equivalent model. Finally, numerical examples shows the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document