scholarly journals An Efficient Time-Variant Reliability Analysis Method with Mixed Uncertainties

Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 229
Author(s):  
Fangyi Li ◽  
Yufei Yan ◽  
Jianhua Rong ◽  
Houyao Zhu

In practical engineering, due to the lack of information, it is impossible to accurately determine the distribution of all variables. Therefore, time-variant reliability problems with both random and interval variables may be encountered. However, this kind of problem usually involves a complex multilevel nested optimization problem, which leads to a substantial computational burden, and it is difficult to meet the requirements of complex engineering problem analysis. This study proposes a decoupling strategy to efficiently analyze the time-variant reliability based on the mixed uncertainty model. The interval variables are treated with independent random variables that are uniformly distributed in their respective intervals. Then the time-variant reliability-equivalent model, containing only random variables, is established, to avoid multi-layer nesting optimization. The stochastic process is first discretized to obtain several static limit state functions at different times. The time-variant reliability problem is changed into the conventional time-invariant system reliability problem. First order reliability analysis method (FORM) is used to analyze the reliability of each time. Thus, an efficient and robust convergence hybrid time-variant reliability calculation algorithm is proposed based on the equivalent model. Finally, numerical examples shows the effectiveness of the proposed method.

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Shui Yu ◽  
Zhonglai Wang

Abstract Due to the uncertainties and the dynamic parameters from design, manufacturing, and working conditions, many engineering structures usually show uncertain and dynamic properties. This paper proposes a novel time-variant reliability analysis method using failure processes decomposition to transform the time-variant reliability problems to the time-invariant problems for dynamic structures under uncertainties. The transformation is achieved via a two-stage failure processes decomposition. First, the limit state function with high dimensional input variables and high order temporal parameters is transformed to a quadratic function of time based on the optimized time point in the first-stage failure processes decomposition. Second, based on the characteristics of the quadratic function and reliability criterion, the time-variant reliability problem is then transformed to a time-invariant system reliability problem in the second-stage failure processes decomposition. Then, the kernel density estimation (KDE) method is finally employed for the system reliability evaluation. Several examples are used to verify the effectiveness of the proposed method to demonstrate its efficiency and accuracy.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jianguo Zhang ◽  
Jiwei Qiu ◽  
Pidong Wang

This paper presents a novel procedure based on first-order reliability method (FORM) for structural reliability analysis with hybrid variables, that is, random and interval variables. This method can significantly improve the computational efficiency for the abovementioned hybrid reliability analysis (HRA), while generally providing sufficient precision. In the proposed procedure, the hybrid problem is reduced to standard reliability problem with the polar coordinates, where an n-dimensional limit-state function is defined only in terms of two random variables. Firstly, the linear Taylor series is used to approximate the limit-state function around the design point. Subsequently, with the approximation of the n-dimensional limit-state function, the new bidimensional limit state is established by the polar coordinate transformation. And the probability density functions (PDFs) of the two variables can be obtained by the PDFs of random variables and bounds of interval variables. Then, the interval of failure probability is efficiently calculated by the integral method. At last, one simple problem with explicit expressions and one engineering application of spacecraft docking lock are employed to demonstrate the effectiveness of the proposed methods.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
C. Jiang ◽  
X. P. Huang ◽  
X. Han ◽  
D. Q. Zhang

Time-variant reliability problems caused by deterioration in material properties, dynamic load uncertainty, and other causes are widespread among practical engineering applications. This study proposes a novel time-variant reliability analysis method based on stochastic process discretization (TRPD), which provides an effective analytical tool for assessing design reliability over the whole lifecycle of a complex structure. Using time discretization, a stochastic process can be converted into random variables, thereby transforming a time-variant reliability problem into a conventional time-invariant system reliability problem. By linearizing the limit-state function with the first-order reliability method (FORM) and furthermore, introducing a new random variable, the converted system reliability problem can be efficiently solved. The TRPD avoids the calculation of outcrossing rates, which simplifies the process of solving time-variant reliability problems and produces high computational efficiency. Finally, three numerical examples are used to verify the effectiveness of this approach.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 568
Author(s):  
Fangyi Li ◽  
Jie Liu ◽  
Yufei Yan ◽  
Jianhua Rong ◽  
Jijun Yi

In practical engineering, it is a cost-consuming problem to consider the time-variant reliability of both random variables and interval variables, which usually requires a lot of calculation. Therefore, a time-variant reliability analysis approach with hybrid uncertain variables is proposed in this paper. In the design period, the stochastic process is discretized into random variables. Simultaneously, the original random variables and the discrete random variables are converted into independent normal variables, and the interval variables are changed into standard variables. Then it is transformed into a hybrid reliability problem of static series system. At different times, the limited state functions are linearized at the most probable point (MPP) and at the most unfavorable point (MUP). The transformed static system reliability problem with hybrid uncertain variables can be solved effectively by introducing random variables. To solve the double-loop nested optimization in the hybrid reliability calculation, an effective iterative method is proposed. Two numerical examples and an engineering example demonstrate the validity of the present approach.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Mingyang Li ◽  
Zequn Wang

Abstract This paper presents a long short-term memory (LSTM)-based ensemble learning approach for time-dependent reliability analysis. An LSTM network is first adopted to learn system dynamics for a specific setting with a fixed realization of time-independent random variables and stochastic processes. By randomly sampling the time-independent random variables, multiple LSTM networks can be trained and leveraged with the Gaussian process (GP) regression to construct a global surrogate model for the time-dependent limit state function. In detail, a set of augmented data is first generated by the LSTM networks and then utilized for GP modeling to estimate system responses under time-dependent uncertainties. With the GP models, the time-dependent system reliability can be approximated directly by sampling-based methods such as the Monte Carlo simulation (MCS). Three case studies are introduced to demonstrate the efficiency and accuracy of the proposed approach.


2014 ◽  
Vol 59 (2) ◽  
pp. 553-562 ◽  
Author(s):  
Agnieszka Surowiak ◽  
Marian Brożek

Abstract Settling velocity of particles, which is the main parameter of jig separation, is affected by physical (density) and the geometrical properties (size and shape) of particles. The authors worked out a calculation algorithm of particles settling velocity distribution for irregular particles assuming that the density of particles, their size and shape constitute independent random variables of fixed distributions. Applying theorems of probability, concerning distributions function of random variables, the authors present general formula of probability density function of settling velocity irregular particles for the turbulent motion. The distributions of settling velocity of irregular particles were calculated utilizing industrial sample. The measurements were executed and the histograms of distributions of volume and dynamic shape coefficient, were drawn. The separation accuracy was measured by the change of process imperfection of irregular particles in relation to spherical ones, resulting from the distribution of particles settling velocity.


Author(s):  
Zhenhui Zhan ◽  
Xianmin Zhang

A general methodology for motion error and motion reliability analysis of planar parallel manipulators (PPMs) with random and interval variables is presented. The inherent uncertainties of the manipulator, including tolerances in manufactures, errors in inputs as well as joint clearances are taken into account. The error model of a 3-RRR parallel manipulator is built and the global sensitivity coefficients of motion errors to variations are defined and obtained. The joint clearances are treated as interval variables while the others are treated as random variables. As a result, the motion error of the manipulator could turn out to be the mixture of a random variable and an interval variable. A new motion reliability analysis method based on the First Order Second Moment (FOSM) method and the Monte Carlo simulation (MCS) method is developed for the manipulator with random and interval variables. This paper provides a new idea to better understand the motion reliability affected by the inherent uncertainties of PPMs.


1986 ◽  
Vol 18 (02) ◽  
pp. 311-340
Author(s):  
Robert P. Kertz

For all uniformly bounded sequences of independent random variablesX1, X2,···, a complete comparison is made between the optimal valueV(X1, X2, ···) = sup {EXt:tis an (a.e.) finite stop rule forX1,X2, ···} and, whereMi(X1,X2, ···) is theith largest order statistic forX1, X2, ··· In particular, fork>1, the set of ordered pairs {(x,y):x=V(X1, X2,···) andfor some independent random variablesX1, X2, ··· taking values in [0, 1]} is precisely the set, whereBk(0) = 0,Bk(1) = 1, and forThe result yields sharp, universal inequalities for independent random variables comparing two choice mechanisms, the mortal&s value of the gameV(X1, X2,···) and the prophet&s constrained maxima expectation of the game. Techniques of proof include probability- and convexity-based reductions; calculus-based, multivariate, extremal problem analysis; and limit theorems of Poisson-approximation type. Precise results are also given for finite sequences of independent random variables.


Sign in / Sign up

Export Citation Format

Share Document