Energy Absorption Optimization of GFRP Laminate by Considering Inner-Lamina Damage Model With Parameter Identification

Author(s):  
Bowen Zhan ◽  
Lingyu Sun ◽  
Bincheng Huang ◽  
Le Shen

In order to improve the simulation accuracy of composite tube crush by finite element method, a nonlinear progressive damage model predicting the progressive inner-lamina damage of laminates is implemented. Each element of FEM is defined by the model. All parameters in this model were identified according to the published test data. The longitudinal crush was simulated by the solver of ABAQUS /explicit using the nonlinear progressive model. The result shows that the failure form pattern, peak force and energy absorption fit well with the published experimental ones. The robust optimization based on Six sigma technology and probability distribution of design variables is carried out to obtain an improved energy absorption property instead of deterministic optimization. This method can obtain an optimal composite tube with stable high energy absorption capability in a practical manufacture process.

2021 ◽  
pp. 002199832098559
Author(s):  
Yun-Tao Zhu ◽  
Jun-Jiang Xiong ◽  
Chu-Yang Luo ◽  
Yi-Sen Du

This paper outlines progressive damage characteristics of screwed single-lap CFRPI-metal joints subjected to tensile loading at RT (room temperature) and 350°C. Quasi-static tensile tests were performed on screwed single-lap CCF300/AC721-30CrMnSiA joint at RT and 350°C, and the load versus displacement curve, strength and stiffness of joint were gauged and discussed. With due consideration of thermal-mechanical interaction and complex failure mechanism, a modified progressive damage model (PDM) based on the mixed failure criterion was devised to simulate progressive damage characteristics of screwed single-lap CCF300/AC721-30CrMnSiA joint, and simulations correlate well with experiments. By using the PDM, the effects of geometry dimensions on mechanical characteristics of screwed single-lap CCF300/AC721-30CrMnSiA joint were analyzed and discussed.


2019 ◽  
Vol 1 (1) ◽  
pp. 015028
Author(s):  
Yongqi Yang ◽  
Li Zhang ◽  
Licheng Guo ◽  
Suyang Zhong ◽  
Jiuzhou Zhao ◽  
...  

Author(s):  
Junjie Zhou ◽  
Shengnan Wang

In this paper, a progressive damage model for studying the dynamic mechanical response and damage development of composite laminates under low-velocity impact was established. The model applied the Hashin and Hou failure criteria to predict the initiation of intra-laminar damage (fiber and matrix damage); a linear degradation scheme combined with the equivalent displacement method was adopted to simulate the damage development; a cohesive zone model with the bilinear traction-separation relationship was used to predict delamination. A user material subroutine VUMAT was coded, and the simulation analysis of carbon fiber reinforcement composite laminates subjected to 25 J impact was performed via commercial software ABAQUS. The predicted impact force-time curve, impact force-displacement curve, and damage distribution contours among the layers were in a good agreement with the experimental, which verified the proposed model. According to the simulation results, the fiber damage and matrix damage were analyzed, and the expansion of delamination was discussed.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012073
Author(s):  
Xueyao Hu ◽  
Jiaojiao Tang ◽  
Wei Xiao ◽  
Kepeng Qu

Abstract A progressive damage model was presented for carbon fiber woven composites under low velocity impact, considering the strain rate sensitivity of both mechanical properties and failure mechanisms. In this model, strain rate dependency of elastic modulus and nominal strength along in-plane direction are considered. Based on the Weibull distribution, stiffness progressive degradation is conducted by introducing strain rate dependent damage variables for distinct damage modes. With the model implemented in ABAQUS/Explicit via user-defined material subroutine (VUMAT), the mechanical behavior and possible damage modes of composites along in-plane direction can be determined. Furthermore, a bilinear traction separation model and a quadratic stress criterion are applied to predict the initiation and evolution of interlaminar delamination. Comparisons are made between the experimental results and numerical simulations. It is shown that the mechanical response and damage characteristics under low velocity impact, such as contact force history and delamination, are more consistent with the experimental results when taken the strain rate effect into consideration.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092413
Author(s):  
Lai Hu ◽  
Jun Zha ◽  
Yaolong Chen

This study conducted an investigation on transverse quasi-static three-point loading on a circular aluminum tube and its characteristic plastic failure and energy-absorption behaviors. The thin wall thickness of the aluminum tube, the various diameter and thickness ratios ( D/ t) of the tube, and the tube length are important control parameters. Experimental data for different span length and thickness ratios of the tube were characterized and correlated to its plastic collapse behavior. A simulation model by computational analysis using ANSYS was also conducted as a comparative study. The results of the study found that transverse three-point bend loading (ASTM F290) of a circular aluminum tube underwent different stages of deformation, from initial pure crumpling to crumpling and bending, and finally, structural rupture. The results of master curve analysis found that regions of high energy absorption and low energy absorption can be classified with respect to the characteristic tubular deformation. High energy absorption deformation is correlated with a short span length and higher D/ t ratio, and vice versa for low energy absorption deformation of the circular aluminum tube. Simulation analysis also predicted similar characteristic trends of deformation behavior in the experiment, with a less than 3% average coefficient of variation.


2013 ◽  
Vol 48 (25) ◽  
pp. 3091-3109 ◽  
Author(s):  
Jian Xu ◽  
Stepan Vladimirovitch Lomov ◽  
Ignaas Verpoest ◽  
Subbareddy Daggumati ◽  
Wim Van Paepegem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document