Study of Surface Quality and Cutting Parameter Optimization in Side Milling CFRP With Diamond Coated Carbide Tool

Author(s):  
Weiwei Liu ◽  
Yuan Hu ◽  
Jianwu Zhou ◽  
Renjie Lu ◽  
Chengzhou Wang

Composite machining is one of the hot researches currently, and optimal cutting parameters are particularly important to get ideal surface and reduce processing cost of workpiece. By comparison, the present paper selects the surface root mean square deviation Sq as the three-dimensional evaluation parameter of surface roughness to reflect the special appearance after cutting accurately. The single-factor experiment and orthogonal experiment were conducted to study the machining defects emerged and effect of parameters on surface roughness when side milling CFRP (Carbon Fiber Reinforced Plastics) with diamond coated carbide tool. The mapping relationship between cutting parameters and surface roughness was established based on the experiment results. Then, the cutting parameters were optimized by using genetic algorithm with two conflicting objectives: material removal rate and surface roughness. The experiment results show that the proposed method is feasible and effective, and can provide references for the actual processing of CFRP.

2020 ◽  
Vol 111 (9-10) ◽  
pp. 2419-2439
Author(s):  
Tamal Ghosh ◽  
Yi Wang ◽  
Kristian Martinsen ◽  
Kesheng Wang

Abstract Optimization of the end milling process is a combinatorial task due to the involvement of a large number of process variables and performance characteristics. Process-specific numerical models or mathematical functions are required for the evaluation of parametric combinations in order to improve the quality of the machined parts and machining time. This problem could be categorized as the offline data-driven optimization problem. For such problems, the surrogate or predictive models are useful, which could be employed to approximate the objective functions for the optimization algorithms. This paper presents a data-driven surrogate-assisted optimizer to model the end mill cutting of aluminum alloy on a desktop milling machine. To facilitate that, material removal rate (MRR), surface roughness (Ra), and cutting forces are considered as the functions of tool diameter, spindle speed, feed rate, and depth of cut. The principal methodology is developed using a Bayesian regularized neural network (surrogate) and a beetle antennae search algorithm (optimizer) to perform the process optimization. The relationships among the process responses are studied using Kohonen’s self-organizing map. The proposed methodology is successfully compared with three different optimization techniques and shown to outperform them with improvements of 40.98% for MRR and 10.56% for Ra. The proposed surrogate-assisted optimization method is prompt and efficient in handling the offline machining data. Finally, the validation has been done using the experimental end milling cutting carried out on aluminum alloy to measure the surface roughness, material removal rate, and cutting forces using dynamometer for the optimal cutting parameters on desktop milling center. From the estimated surface roughness value of 0.4651 μm, the optimal cutting parameters have given a maximum material removal rate of 44.027 mm3/s with less amplitude of cutting force on the workpiece. The obtained test results show that more optimal surface quality and material removal can be achieved with the optimal set of parameters.


2011 ◽  
Vol 175 ◽  
pp. 289-293 ◽  
Author(s):  
Hao Liu ◽  
Chong Hu Wu ◽  
Rong De Chen

Side milling Ti6Al4V titanium alloys with fine grain carbide cutters is carried out. The influences of milling parameters on surface roughness are investigated and also discussed with average cutting thickness, material removal rate and vibration. The results reveal that the surface roughness increases with the increase of average cutting thickness and is primarily governed by the radial cutting depth.


2010 ◽  
Vol 4 (2) ◽  
pp. 136 ◽  
Author(s):  
Mukesh Kumar Barua ◽  
Jyoti Sagar Rao ◽  
S.P. Anbuudayasankar ◽  
Tom Page

2012 ◽  
Vol 500 ◽  
pp. 128-133 ◽  
Author(s):  
Han Lian Liu ◽  
Xiang Lv ◽  
Chuan Zhen Huang ◽  
Hong Tao Zhu

In order to improve the machining efficiency and tool life in manufacturing process of hydrogenation reactor shell components, the cutting performance of quadrate GC4235 coated carbide tool in intermittent turning 2.25Cr-1Mo-0.25V steel was investigated, the optimal cutting parameters were obtained. The empirical mathematical models of relationships among the amount of metal removal, tool life, cutting force and cutting parameters were established. The failure mechanism of the GC4235 carbide coated tools for turning 2.25Cr-1Mo-0.25V steel at lower speed intermittent turning was abrasive wear and the coating peeling; however coating peeling and substrate adhesive wear were the main failure forms at the higher speed.


Sign in / Sign up

Export Citation Format

Share Document