Heat Transfer and Hydraulic Characteristics of Cooling Water in a Flat Plate Heat Sink for High Heat Flux IGBT

Author(s):  
Chang-Nian Chen ◽  
Ji-Tian Han ◽  
Wei-Ping Gong ◽  
Tien-Chien Jen

High heat flux is very dangerous for electronic heat transfer, such as IGBT (Insulated Gate Bipolar Transistor) cooling. In order to explore and master the heat transfer and hydraulic characteristics for IGBT cooling, experiments have been carried out to study the situation mentioned above in a flat plate heat sink, which was designed for high heat flux IGBT cooling. The geometrical parameters of the test section are as follows: outline dimension 229 mm × 124 mm × 30 mm; flow channels of 229 mm × 3 mm × 4 mm in total of 20. The experiments performed at atmospheric pressure and with inlet temperatures of 25–35°C, heat fluxes of 3.5–18.9 kW/m2. The influence of temperatures, heat fluxes on IGBT surface temperature and the cooling effect of the liquid cold plate have been investigated under a range of flow rates of 280–2300 kg/m2s. It was found that the heat transfer enhancement was very obvious using this kind of small sized channel for IGBT cooling, which was tens of times of the effect than air cooling or triple of the effect than that in normal sized channels. And the heat transfer enhancement increases with increasing heat fluxes and flow rates, while it decreases with increasing inlet temperatures. Most of the experimental results show good cooling effect as expected. However, it is dangerous for the cooling system under high heat fluxes when the system starts or stops suddenly, when the Respond Time (RT) is less than 5 seconds to cut off heated power. Also, the cooling performance is bad when the heat fluxes increased greatly, which is considered as abnormal situation in operating. The effect on IGBT surface temperature of heat flux is more obvious when the average Nusselt Number is smaller. For hydraulic characteristics observed, it was found that the flow friction increased with flow rates increasing, but the pressure drops of heated flow channels ahead were slightly larger than those back, especially under large flow rates conditions. That is because the temperatures of flow heated in channels ahead are lower than those back, which causes the fluid viscosity to be higher. At last, this paper suggested a series of method for enhancing heat transfer in flat plate heat sink, and also gave some ways to avoid heat transfer dangerous situations for IGBT cooling, which can provide a basis for thermodynamic and hydraulic calculation of flat plate heat sink design and lectotype.

Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


2006 ◽  
Vol 129 (3) ◽  
pp. 247-255 ◽  
Author(s):  
X. L. Xie ◽  
W. Q. Tao ◽  
Y. L. He

With the rapid development of the Information Technology (IT) industry, the heat flux in integrated circuit (IC) chips cooled by air has almost reached its limit at about 100W∕cm2. Some applications in high technology industries require heat fluxes well beyond such a limitation. Therefore, the search for a more efficient cooling technology becomes one of the bottleneck problems of the further development of the IT industry. The microchannel flow geometry offers a large surface area of heat transfer and a high convective heat transfer coefficient. However, it has been hard to implement because of its very high pressure head required to pump the coolant fluid through the channels. A normal channel size could not give high heat flux, although the pressure drop is very small. A minichannel can be used in a heat sink with quite a high heat flux and a mild pressure loss. A minichannel heat sink with bottom size of 20mm×20mm is analyzed numerically for the single-phase turbulent flow of water as a coolant through small hydraulic diameters. A constant heat flux boundary condition is assumed. The effect of channel dimensions, channel wall thickness, bottom thickness, and inlet velocity on the pressure drop, temperature difference, and maximum allowable heat flux are presented. The results indicate that a narrow and deep channel with thin bottom thickness and relatively thin channel wall thickness results in improved heat transfer performance with a relatively high but acceptable pressure drop. A nearly optimized structure of heat sink is found that can cool a chip with heat flux of 350W∕cm2 at a pumping power of 0.314W.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Craig Green ◽  
Peter Kottke ◽  
Xuefei Han ◽  
Casey Woodrum ◽  
Thomas Sarvey ◽  
...  

Three-dimensional (3D) stacked electronics present significant advantages from an electrical design perspective, ranging from shorter interconnect lengths to enabling heterogeneous integration. However, multitier stacking exacerbates an already difficult thermal problem. Localized hotspots within individual tiers can provide an additional challenge when the high heat flux region is buried within the stack. Numerous investigations have been launched in the previous decade seeking to develop cooling solutions that can be integrated within the 3D stack, allowing the cooling to scale with the number of tiers in the system. Two-phase cooling is of particular interest, because the associated reduced flow rates may allow reduction in pumping power, and the saturated temperature condition of the coolant may offer enhanced device temperature uniformity. This paper presents a review of the advances in two-phase forced cooling in the past decade, with a focus on the challenges of integrating the technology in high heat flux 3D systems. A holistic approach is applied, considering not only the thermal performance of standalone cooling strategies but also coolant selection, fluidic routing, packaging, and system reliability. Finally, a cohesive approach to thermal design of an evaporative cooling based heat sink developed by the authors is presented, taking into account all of the integration considerations discussed previously. The thermal design seeks to achieve the dissipation of very large (in excess of 500 W/cm2) background heat fluxes over a large 1 cm × 1 cm chip area, as well as extreme (in excess of 2 kW/cm2) hotspot heat fluxes over small 200 μm × 200 μm areas, employing a hybrid design strategy that combines a micropin–fin heat sink for background cooling as well as localized, ultrathin microgaps for hotspot cooling.


Author(s):  
Harsh Tamakuwala ◽  
Ryan Von Ness ◽  
Debjyoti Banerjee

Plate-fin heat exchangers are widely used in industries especially aerospace, cryogenics, food and chemical process industries where high heat flux surface area per unit volume is of prime importance. These heat exchangers consists of series of corrugated plates (herringbone or chevron), separated by gasket sealing. Chevron angled plates are one of the most commonly used type of geometry. The complex design of chevron plate heat exchanger, induces high turbulence and flow reversals causing high heat transfer through the plates. This paper discusses about the computational fluid dynamics simulations conducted over a simplified geometry of Chevron Plate Heat Exchanger to understand the formulation of vortices at different Reynold’s number for various aspect ratios. A single phase laminar flow with periodic boundary condition is used for analysis of the fluid behavior in a unit pattern of the corrugation geometry. Based on different flow and geometric conditions, varying amounts of swirl-flows are observed and different behavior of shear stress and heat transfer plot along the length of the plate is observed. At higher Reynolds numbers (Re), the re-circulations and mixing by the induced vortices causes significant rise of heat flux, with marginal increase in friction factor.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Jungho Lee ◽  
Sangho Sohn ◽  
Sang Gun Lee

The simultaneous measurement between the boiling visualization and the boiling heat transfer characteristics by two adjacent impinging jets on hot steel plate was made by the experimental technique that has a function of high-temperature flat-plate heat flux gauge. The 22 K-type thermocouples were installed at 1 mm below the surface of flat-plate heat flux gauge. The 2-D inverse heat conduction was formulated to solve the surface temperature and heat flux. The boiling visualization was synchronized with a 4K video camera which was meaningful to understand complex boiling heat transfer phenomena. The heat flux gauge was uniformly heated up to 900°C by induction heating. The successive boiling images show where the nucleate boiling starts to occur on hot surface and the film boiling turns to be collapsed. The measured surface temperature and heat flux distribution agrees well with the corresponding boiling visualization: While heat transfer at the stagnation point shows a maximum heat flux, the interaction between two adjacent impinging jets exhibits a relative high heat flux and a steep temperature gradient until the end of boiling heat transfer at which single-phase convection occurs near 200°C.


Author(s):  
Jianwei Gao ◽  
Hongxia Li ◽  
Saif Almheiri ◽  
TieJun Zhang

Thermal management is essential to compact devices particularly for high heat flux removal applications. As a popular thermal technology, refrigeration cooling is able to provide relatively high heat flux removal capability and uniform device surface temperature. In a refrigeration cycle, the performance of evaporator is extremely important to the overall cooling efficiency. In a well-designed evaporator, effective flow boiling heat transfer can be achieved whereas the critical heat flux (CHF) or dryout condition must be avoided. Otherwise the device surface temperature would rise significantly and cause device burnout due to the poor heat transfer performance of film boiling. In order to evaluate the influence of varying imposed heat fluxes, saturated flow boiling in the evaporator is systematically studied. The complete refrigerant flow boiling hysteresis between the imposed heat flux and the exit wall superheat is characterized. Upon the occurrence of CHF at the evaporator wall exit, the wall heat flux redistributes due to the axial wall heat conduction, which drives the dryout point to propagate upstream in the evaporator. As a result, a significant amount of thermal energy is stored in the evaporator wall. While the heat flux starts decreasing, the dryout point moves downstream and closer to the exit. The stored heat in the wall dissipates slowly and leads to the delay in rewetting or quenching, which is the key to understand and predict the flow boiling hysteresis. In order to reveal the transient heat releasing mechanism, an augmented separated-flow model is developed to predict the moving rewetting point and minimum heat flux at the evaporator exit, and the model predictions are further validated by experimental data from a refrigeration cooling testbed.


Sign in / Sign up

Export Citation Format

Share Document