A Review of Two-Phase Forced Cooling in Three-Dimensional Stacked Electronics: Technology Integration

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Craig Green ◽  
Peter Kottke ◽  
Xuefei Han ◽  
Casey Woodrum ◽  
Thomas Sarvey ◽  
...  

Three-dimensional (3D) stacked electronics present significant advantages from an electrical design perspective, ranging from shorter interconnect lengths to enabling heterogeneous integration. However, multitier stacking exacerbates an already difficult thermal problem. Localized hotspots within individual tiers can provide an additional challenge when the high heat flux region is buried within the stack. Numerous investigations have been launched in the previous decade seeking to develop cooling solutions that can be integrated within the 3D stack, allowing the cooling to scale with the number of tiers in the system. Two-phase cooling is of particular interest, because the associated reduced flow rates may allow reduction in pumping power, and the saturated temperature condition of the coolant may offer enhanced device temperature uniformity. This paper presents a review of the advances in two-phase forced cooling in the past decade, with a focus on the challenges of integrating the technology in high heat flux 3D systems. A holistic approach is applied, considering not only the thermal performance of standalone cooling strategies but also coolant selection, fluidic routing, packaging, and system reliability. Finally, a cohesive approach to thermal design of an evaporative cooling based heat sink developed by the authors is presented, taking into account all of the integration considerations discussed previously. The thermal design seeks to achieve the dissipation of very large (in excess of 500 W/cm2) background heat fluxes over a large 1 cm × 1 cm chip area, as well as extreme (in excess of 2 kW/cm2) hotspot heat fluxes over small 200 μm × 200 μm areas, employing a hybrid design strategy that combines a micropin–fin heat sink for background cooling as well as localized, ultrathin microgaps for hotspot cooling.

2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Fabio Battaglia ◽  
Farah Singer ◽  
David C. Deisenroth ◽  
Michael M. Ohadi

Abstract In this paper, we present the results of an experimental study involving low thermal resistance cooling of high heat flux power electronics in a forced convection mode, as well as in a thermosiphon (buoyancy-driven) mode. The force-fed manifold microchannel cooling concept was utilized to substantially improve the cooling performance. In our design, the heat sink was integrated with the simulated heat source, through a single solder layer and substrate, thus reducing the total thermal resistance. The system was characterized and tested experimentally in two different configurations: the passive (buoyancy-driven) loop and the forced convection loop. Parametric studies were conducted to examine the role of different controlling parameters. It was demonstrated that the thermosiphon loop can handle heat fluxes in excess of 200 W/cm2 with a cooling thermal resistance of 0.225 (K cm2)/W for the novel cooling concept and moderate fluctuations in temperature. In the forced convection mode, a more uniform temperature distribution was achieved, while the heat removal performance was also substantially enhanced, with a corresponding heat flux capacity of up to 500 W/cm2 and a thermal resistance of 0.125 (K cm2)/W. A detailed characterization leading to these significant results, a comparison between the performance between the two configurations, and a flow visualization in both configurations are discussed in this paper.


Author(s):  
Daxiang Deng ◽  
Qingsong Huang ◽  
Yanlin Xie ◽  
Wei Zhou ◽  
Xiang Huang ◽  
...  

Two-phase boiling in advanced microchannel heat sinks offers an efficient and attractive solution for heat dissipation of high-heat-flux devices. In this study, a type of reentrant copper microchannels was developed for heat sink cooling systems. It consisted of 14 parallel Ω-shaped reentrant copper microchannels with a hydraulic diameter of 781μm. Two-phase pressure drop characteristics were comprehensively accessed via flow boiling tests. Both deionized water and ethanol tests were conducted at inlet subcooling of 10°C and 40°C, mass fluxes of 125–300kg/m2·s, and a wide range of heat fluxes and vapor qualities. The effects of heat flux, mass flux, inlet subcoolings and coolants on the two-phase pressure drop were systematically explored. The results show that the two-phase pressure drop of reentrant copper microchannels generally increased with increasing heat fluxes and vapor qualities. The role of mass flux and inlet temperatures was dependent on the test coolant. The water tests presented smaller pressure drop than the ethanol ones. These results provide critical experimental information for the development of microchannel heat sink cooling systems, and are of considerable practical relevance.


Author(s):  
David C. Deisenroth ◽  
Avram Bar-Cohen ◽  
Michael Ohadi

Two-phase cooling has become an increasingly attractive option for thermal management of high-heat flux electronics. Cooling channels embedded directly on the back of the heat source (chip) facilitate two-phase boiling/evaporation effectiveness, eliminating many thermal resistances generated by more traditional, remote chip-cooling approaches. Accordingly, manifold-microchannel flow paths in embedded cooling systems can allow very high heat fluxes with low junction temperatures. But, the effect of the feeding manifold design, channel geometry, and the associated shear, stagnation zones, and centripetal accelerations with varying heat flux and mass flux are not well understood. This study builds upon our previous work and elucidates effects of channel geometry, mass flux, and outlet quality on the boiling/evaporation flow regimes in a manifolded microgap channel.


Author(s):  
Chang-Nian Chen ◽  
Ji-Tian Han ◽  
Wei-Ping Gong ◽  
Tien-Chien Jen

High heat flux is very dangerous for electronic heat transfer, such as IGBT (Insulated Gate Bipolar Transistor) cooling. In order to explore and master the heat transfer and hydraulic characteristics for IGBT cooling, experiments have been carried out to study the situation mentioned above in a flat plate heat sink, which was designed for high heat flux IGBT cooling. The geometrical parameters of the test section are as follows: outline dimension 229 mm × 124 mm × 30 mm; flow channels of 229 mm × 3 mm × 4 mm in total of 20. The experiments performed at atmospheric pressure and with inlet temperatures of 25–35°C, heat fluxes of 3.5–18.9 kW/m2. The influence of temperatures, heat fluxes on IGBT surface temperature and the cooling effect of the liquid cold plate have been investigated under a range of flow rates of 280–2300 kg/m2s. It was found that the heat transfer enhancement was very obvious using this kind of small sized channel for IGBT cooling, which was tens of times of the effect than air cooling or triple of the effect than that in normal sized channels. And the heat transfer enhancement increases with increasing heat fluxes and flow rates, while it decreases with increasing inlet temperatures. Most of the experimental results show good cooling effect as expected. However, it is dangerous for the cooling system under high heat fluxes when the system starts or stops suddenly, when the Respond Time (RT) is less than 5 seconds to cut off heated power. Also, the cooling performance is bad when the heat fluxes increased greatly, which is considered as abnormal situation in operating. The effect on IGBT surface temperature of heat flux is more obvious when the average Nusselt Number is smaller. For hydraulic characteristics observed, it was found that the flow friction increased with flow rates increasing, but the pressure drops of heated flow channels ahead were slightly larger than those back, especially under large flow rates conditions. That is because the temperatures of flow heated in channels ahead are lower than those back, which causes the fluid viscosity to be higher. At last, this paper suggested a series of method for enhancing heat transfer in flat plate heat sink, and also gave some ways to avoid heat transfer dangerous situations for IGBT cooling, which can provide a basis for thermodynamic and hydraulic calculation of flat plate heat sink design and lectotype.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Brian M. Fronk ◽  
Alexander S. Rattner

A novel thermal management approach is explored, which uses supercritical carbon dioxide (sCO2) as a working fluid to manage extreme heat fluxes in electronics cooling applications. In the pseudocritical region, sCO2 has extremely high volumetric thermal capacity, which can enable operation with low pumping requirements, and without the potential for two-phase critical heat flux (CHF) and flow instabilities. A model of a representative microchannel heat sink is evaluated with single-phase liquid water and FC-72, two-phase boiling R-134a, and sCO2. For a fixed pumping power, sCO2 is found to yield lower heat-sink wall temperatures than liquid coolants. Practical engineering challenges for supercritical thermal management systems are discussed, including the limits of predictive heat transfer models, narrow operating temperature ranges, high working pressures, and pump design criteria. Based on these findings, sCO2 is a promising candidate working fluid for cooling high heat flux electronics, but additional thermal transport research and engineering are needed before practical systems can be realized.


2019 ◽  
Vol 196 ◽  
pp. 00021
Author(s):  
Karapet Eloyan ◽  
Alexey Kreta ◽  
Egor Tkachenko

One of the promising ways of removing large heat fluxes from the surface of heat-stressed elements of electronic devices is the use of evaporating thin layer of liquid film, moving under the action of the gas flow in a flat channel. In this work, a prototype of evaporative cooling system for high heat flux removal with forced circulation of liquid and gas coolants with controlled pulsation, capable to remove heat flux of up to 1,5 kW/cm2 and higher was presented. For the first time the regime with controlled pulsation is used. Due to pulsations, it is possible to achieve high values of critical heat flux due to a brief increase in the flow rate of the liquid, which allows to "wash off" large dry spots and prevent the occurrence of zones of flow and drying.


Author(s):  
Satish G. Kandlikar ◽  
William J. Grande

This paper provides a roadmap of development in the thermal and fabrication aspects of microchannels as applied in the microelectronics and other high heat-flux cooling applications. Microchannels are defined as flow passages that have hydraulic diameters in the range of 10 to 200 micrometers. The impetus for microchannel research was provided by the pioneering work of Tuckerman and Pease [1] at Stanford University in the early eighties. Since that time, this technology has received considerable attention in microelectronics and other major application areas, such as fuel cell systems and advanced heat sink designs. After reviewing the advancement in heat transfer technology from a historical perspective, advantages of using microchannels in high heat flux cooling applications is discussed, and research done on various aspects of microchannel heat exchanger performance is reviewed. Single-phase performance for liquids is expected to be still describable by the conventional equations; however the gas flow may be influenced by the rarefaction effects. Two-phase flow is another topic that is still under active research. The evolution of research into microchannel heat sinks has paralleled the advancements made in microfabrication technology. The earliest microchannels were built using anisotropic wet chemical etching techniques based on alkali solutions. While this method has been exploited successfully, it does impose certain restrictions on silicon wafer type and geometry. Recently, anisotropic dry etching processes have been developed that circumvent these restrictions. In addition, dry etching methods can be significantly faster and, from a manufacturing standpoint, create fewer contamination and waste treatment problems. Advances in fabrication technology will continue to fuel improvements in microchannel heat sink performance and cost for the foreseeable future. Some fabrication areas that may spur advances include new materials, high aspect ratio patterning techniques other than dry etching, active fluid flow elements, and micromolding.


Sign in / Sign up

Export Citation Format

Share Document