Prediction of Refrigerant Flow Boiling Hysteresis With an Augmented Separated-Flow Model

Author(s):  
Jianwei Gao ◽  
Hongxia Li ◽  
Saif Almheiri ◽  
TieJun Zhang

Thermal management is essential to compact devices particularly for high heat flux removal applications. As a popular thermal technology, refrigeration cooling is able to provide relatively high heat flux removal capability and uniform device surface temperature. In a refrigeration cycle, the performance of evaporator is extremely important to the overall cooling efficiency. In a well-designed evaporator, effective flow boiling heat transfer can be achieved whereas the critical heat flux (CHF) or dryout condition must be avoided. Otherwise the device surface temperature would rise significantly and cause device burnout due to the poor heat transfer performance of film boiling. In order to evaluate the influence of varying imposed heat fluxes, saturated flow boiling in the evaporator is systematically studied. The complete refrigerant flow boiling hysteresis between the imposed heat flux and the exit wall superheat is characterized. Upon the occurrence of CHF at the evaporator wall exit, the wall heat flux redistributes due to the axial wall heat conduction, which drives the dryout point to propagate upstream in the evaporator. As a result, a significant amount of thermal energy is stored in the evaporator wall. While the heat flux starts decreasing, the dryout point moves downstream and closer to the exit. The stored heat in the wall dissipates slowly and leads to the delay in rewetting or quenching, which is the key to understand and predict the flow boiling hysteresis. In order to reveal the transient heat releasing mechanism, an augmented separated-flow model is developed to predict the moving rewetting point and minimum heat flux at the evaporator exit, and the model predictions are further validated by experimental data from a refrigeration cooling testbed.

Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


2019 ◽  
Vol 196 ◽  
pp. 00062
Author(s):  
Vladimir Kuznetsov ◽  
Alisher Shamirzaev ◽  
Alexander Mordovskoy

This paper presents the results of an experimental study of the heat transfer during flow boiling of refrigerant R236fa in a horizontal microchannel heat sink. The experiments were performed using closed loop that re-circulates coolant. Microchannel heat exchanger that contains two microchannels with 2x0.4 mm cross-section was used as the test section. The dependence of average heat flux on wall superheat and critical heat flux were measured in the range of mass fluxes from 600 to 1600 kg/m2s and in the range of heat fluxes from 5 to 120 W/cm2. For heat flux greater than 60 W/cm2, nucleate boiling suppression has significant effect on the flow boiling heat transfer, and this leads to decrease of the heat transfer coefficient with heat flux grows.


2021 ◽  
Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract The onset of nucleate boiling (ONB) is the point at which the heat transfer mechanism in fluids changes and is one of the thermo-hydraulic factors that must be considered when establishing a cooling system operation strategy. Because the high heat flux of several MW/m2, which is loaded within a tokamak, is applied under a one-side heating condition, it is necessary to determine a correlative relation that can predict ONB under special heating conditions. In this study, the ONB of a one-side-heated screw tube was experimentally analyzed via a subcooled flow boiling experiment. The helical nut structure of the screw tube flow path wall allows for improved heat transfer performance relative to smooth tubes, providing a screw tube with a 53.98% higher ONB than a smooth tube. The effects of the system parameters on the ONB heat flux were analyzed based on the changes in the heat transfer mechanism, with the results indicating that the flow rate and degree of subcooling are proportional to the ONB heat flux because increasing these factors improves the forced convection heat transfer and increases the condensation rate, respectively. However, it was observed that the liquid surface tension and latent heat decrease as the pressure increases, leading to a decrease in the ONB heat flux. An evaluation of the predictive performance of existing ONB correlations revealed that most have high error rates because they were developed based on ONB experiments on micro-channels or smooth tubes and not under one-side high heat load conditions. To address this, we used dimensional analysis based on Python code to develop new ONB correlations that reflect the influence of system parameters.


2008 ◽  
Vol 51 (21-22) ◽  
pp. 5400-5414 ◽  
Author(s):  
Bruno Agostini ◽  
John Richard Thome ◽  
Matteo Fabbri ◽  
Bruno Michel ◽  
Daniele Calmi ◽  
...  

Author(s):  
Hailei Wang ◽  
Richard Peterson

Flow boiling and heat transfer enhancement in four parallel microchannels using a dielectric working fluid, HFE 7000, was investigated. Each channel was 1000 μm wide and 510 μm high. A unique channel surface enhancement technique via diffusion bonding a layer of conductive fine wire mesh onto the heating wall was developed. According to the obtained flow boiling curves for both the bare and mesh channels, the amount of wall superheat was significantly reduced for the mesh channel at all stream-wise locations. This indicated that the nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. Both the nucleate boiling dominated and convective evaporation dominated regimes were identified. In addition, the overall trend for the flow boiling heat transfer coefficient, with respect to vapor quality, was increasing until the vapor quality reached approximately 0.4. The critical heat flux (CHF) for the mesh channel was also significantly higher than that of the bare channel in the low vapor quality region. Due to the fact of how the mesh was incorporated into the channels, no pressure drop penalty was identified for the mesh channels. Potential applications for this kind of mesh channel include high heat-flux electronic cooling systems and various energy conversion systems.


Nukleonika ◽  
2015 ◽  
Vol 60 (2) ◽  
pp. 285-288 ◽  
Author(s):  
Yashashri Patil ◽  
S. Khirwadkar ◽  
S. M. Belsare ◽  
Rajamannar Swamy ◽  
M. S. Khan ◽  
...  

Abstract This paper is focused on various aspects of the development and testing of water cooled divertor PFCs. Divertor PFCs are mainly designed to absorb the heat and particle fluxes outflowing from the core plasma of fusion devices like ITER. The Divertor and First Wall Technology Development Division at the Institute for Plasma Research (IPR), India, is extensively working on development and testing of divertor plasma facing components (PFCs). Tungsten and graphite macro-brush type test mock-ups were produced using vacuum brazing furnace technique and tungsten monoblock type of test mock-ups were obtained by hot radial pressing (HRP) technique. Heat transfer performance of the developed test mock-ups was tested using high heat flux tests with different heat load conditions as well as the surface temperature monitoring using transient infrared thermography technique. Recently we have established the High Heat Flux Test Facility (HHFTF) at IPR with an electron gun EH300V (M/s Von Ardenne Anlagentechnik GmbH, Germany) having maximum power 200 kW. Two tungsten monoblock type test mock-ups were probed using HHFTF. Both of the test mock-ups successfully sustained 316 thermal cycles during high heat flux (HHF) tests. The test mock-ups were non-destructively tested using infrared thermography before and after the HHF tests. In this note we describe the detailed procedure used for testing macro-brush and monoblock type test mock-ups using in-house transient infrared thermography set-up. An acceptance criteria limit was defined for small scale macro-brush type of mock-ups using DTrefmax value and the surface temperature measured during the HHF tests. It is concluded that the heat transfer behavior of a plasma facing component was checked by the HHF tests followed by transient IR thermography. The acceptance criteria DTrefmax limit for a graphite macro-brush mock-up was found to be ~3°C while for a tungsten macro-brush mock-up it was ~5°C.


Author(s):  
Satish G. Kandlikar

Research efforts on flow boiling in microchannels were focused on stabilizing the flow during the early part of the last decade. After achieving that goal through inlet restrictors and distributed nucleation sites, the focus has now shifted on improving its performance for high heat flux dissipation. The recent worldwide efforts described in this paper are aimed at increasing the critical heat flux (CHF) while keeping the pressure drop low, with an implicit goal of dissipating 1 kW/cm2 for meeting the high-end target in electronics cooling application. The underlying mechanisms in these studies are identified and critically evaluated for their potential in meeting the high heat flux dissipation goals. Future need to simultaneously increase the CHF and the heat transfer coefficient (HTC) has been identified and hierarchical integration of nanoscale and microscale technologies is deemed necessary for developing integrated pathways toward meeting this objective.


Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Flow boiling with microchannel can dissipate high heat fluxes at low surface temperature difference. A number of issues, such as instabilities, low critical heat flux (CHF) and low heat transfer coefficients, have prevented it from reaching its full potential. A new design incorporating open microchannels with uniform and tapered manifold (OMM) was shown to mitigate these issues successfully. Distilled, degassed water at 80 mL/min is used as the working fluid. Plain and open microchannel surfaces are used as the test sections. Heat transfer and pressure drop performance for uniform and tapered manifold with both the surfaces are discussed. A low pressure drop of 7.5 kPa is obtained with tapered manifold and microchannel chip at a heat flux of 263 W/cm2 without reaching CHF. The pressure drop data is further compared with the homogenous model and the initial results are presented.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Satish G. Kandlikar ◽  
Theodore Widger ◽  
Ankit Kalani ◽  
Valentina Mejia

Flow boiling in microchannels has been extensively studied in the past decade. Instabilities, low critical heat flux (CHF) values, and low heat transfer coefficients have been identified as the major shortcomings preventing its implementation in practical high heat flux removal systems. A novel open microchannel design with uniform and tapered manifolds (OMM) is presented to provide stable and highly enhanced heat transfer performance. The effects of the gap height and flow rate on the heat transfer performance have been experimentally studied with water. The critical heat fluxes (CHFs) and heat transfer coefficients obtained with the OMM are significantly higher than the values reported by previous researchers for flow boiling with water in microchannels. A record heat flux of 506 W/cm2 with a wall superheat of 26.2 °C was obtained for a gap size of 0.127 mm. The CHF was not reached due to heater power limitation in the current design. A maximum effective heat transfer coefficient of 290,000 W/m2 °C was obtained at an intermediate heat flux of 319 W/cm2 with a gap of 0.254 mm at 225 mL/min. The flow boiling heat transfer was found to be insensitive to flow rates between 40–333 mL/min and gap sizes between 0.127–1.016 mm, indicating the dominance of nucleate boiling. The OMM geometry is promising to provide exceptional performance that is particularly attractive in meeting the challenges of high heat flux removal in electronics cooling applications.


Author(s):  
Chang-Nian Chen ◽  
Ji-Tian Han ◽  
Wei-Ping Gong ◽  
Tien-Chien Jen

High heat flux is very dangerous for electronic heat transfer, such as IGBT (Insulated Gate Bipolar Transistor) cooling. In order to explore and master the heat transfer and hydraulic characteristics for IGBT cooling, experiments have been carried out to study the situation mentioned above in a flat plate heat sink, which was designed for high heat flux IGBT cooling. The geometrical parameters of the test section are as follows: outline dimension 229 mm × 124 mm × 30 mm; flow channels of 229 mm × 3 mm × 4 mm in total of 20. The experiments performed at atmospheric pressure and with inlet temperatures of 25–35°C, heat fluxes of 3.5–18.9 kW/m2. The influence of temperatures, heat fluxes on IGBT surface temperature and the cooling effect of the liquid cold plate have been investigated under a range of flow rates of 280–2300 kg/m2s. It was found that the heat transfer enhancement was very obvious using this kind of small sized channel for IGBT cooling, which was tens of times of the effect than air cooling or triple of the effect than that in normal sized channels. And the heat transfer enhancement increases with increasing heat fluxes and flow rates, while it decreases with increasing inlet temperatures. Most of the experimental results show good cooling effect as expected. However, it is dangerous for the cooling system under high heat fluxes when the system starts or stops suddenly, when the Respond Time (RT) is less than 5 seconds to cut off heated power. Also, the cooling performance is bad when the heat fluxes increased greatly, which is considered as abnormal situation in operating. The effect on IGBT surface temperature of heat flux is more obvious when the average Nusselt Number is smaller. For hydraulic characteristics observed, it was found that the flow friction increased with flow rates increasing, but the pressure drops of heated flow channels ahead were slightly larger than those back, especially under large flow rates conditions. That is because the temperatures of flow heated in channels ahead are lower than those back, which causes the fluid viscosity to be higher. At last, this paper suggested a series of method for enhancing heat transfer in flat plate heat sink, and also gave some ways to avoid heat transfer dangerous situations for IGBT cooling, which can provide a basis for thermodynamic and hydraulic calculation of flat plate heat sink design and lectotype.


Sign in / Sign up

Export Citation Format

Share Document