Synthesis and Characterization of Alginate-Based Hydrogel Microbeads for Magnesium Release

Author(s):  
Shalil Khanal ◽  
Udhab Adhikari ◽  
Nava P. Rijal ◽  
Devdas Pai ◽  
Jagannathan Sankar ◽  
...  

Magnesium injection is a suitable approach for replenishment of its ions (Mg++) during neural or tissue injury and stroke to avoids risks associated with abnormally low level of Mg++ in blood. In this study, alginate encapsulated magnesium sulfate microbeads were fabricated by the electrospraying technique for Mg++ delivery. Microbeads were evaluated for particle size and surface morphology using inverted optical microscopy and scanning electron microscopy (SEM) respectively. Average particle size of 200–500 μm for hydrated and 50–200 μm for dry beads were observed. An in vitro release study of Mg++ was performed; revealing a cumulative release of ∼50% within first 24 h. This strategy can potentially be useful for the targeted local delivery of magnesium at required concentrations and subsequently enhance the therapeutic efficacy of magnesium in treating tissue injury or stroke.

Author(s):  
Mohammed Sabar Al-lami ◽  
Malath H. Oudah ◽  
Firas A. Rahi

This study was carried out to prepare and characterize domperidone nanoparticles to enhance solubility and the release rate. Domperidone is practically insoluble in water and has low and an erratic bioavailability range from 13%-17%. The domperidone nanoparticles were prepared by solvent/antisolvent precipitation method at different polymer:drug ratios of 1:1 and 2:1 using different polymers and grades of poly vinyl pyrolidone, hydroxy propyl methyl cellulose and sodium carboxymethyl cellulose as stabilizers. The effect of polymer type, ratio of polymer:drug, solvent:antisolvent ratio, stirring rate and stirring time on the particle size, were investigated and found to have a significant (p? 0.05) effect on particle size. The best formula was obtained with lowest average particle size of 84.05. This formula was studied for compatibility by FTIR and DSC, surface morphology by FESEM and crystalline state by XRPD. Then domperidone nanoparticles were formulated into a simple capsule dosage form in order to study of the in vitro release of drug from nanoparticles in comparison raw drug and mixture of polymer:drug ratios of 2:1. The release of domperidone from best formula was highly improved with a significant (p? 0.05) increase.


2011 ◽  
Vol 197-198 ◽  
pp. 238-241 ◽  
Author(s):  
Pu Wang Li ◽  
Zheng Peng ◽  
F.H. She ◽  
L.X. Kong

Drug delivery systems with active targeting ligand provide improved therapeutic efficiency due to the selectivity towards tumor cells. In this paper we prepared drug loaded nanoparticles (NPs) using folate (FA) incorporated chitosan (FA-CS) based on ionic gelation technology. FA-CS NPs were spherical in shape with an average particle size of 100 nm, while 5-fluorouracil (5-FU) loaded NPs became less circular with average particle size of 100-500 nm. NPs made from FA-CS conjugates exhibited improved capability to encapsulate hydrophilic 5-FU. It was found 5-FU distributed in FA-CS NPs in solid solution state. In vitro release results demonstrated the release of 5-FU from FA-CS NPs was more controllable as compared to that of CS NPs.


2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.


2016 ◽  
Vol 18 (2) ◽  
pp. 131-139
Author(s):  
Kinga Łuczka ◽  
Barbara Grzmil ◽  
Bogumił Kic ◽  
Krzysztof Kowalczyk

Abstract Synthesis and characterization of the aluminum phosphates modified with ammonium, calcium and molybdenum were conducted. The influence of process parameters (reactive pressure and molar ratios) in the reaction mixture were studied. The contents of the individual components in the products were in the range of: 10.97–17.31 wt% Al, 2.65–13.32 wt% Ca, 0.70–3.11 wt% Mo, 4.36–8.38 wt% NH3, and 35.12–50.54 wt% P2O5. The materials obtained in the experiments were characterized by various physicochemical parameters. The absorption oil number was in the range from 67 to 89 of oil/100 g of product, the surface area was within the range of 4–76 m2/g, whereas the average particle size of products reached 282–370 nm. The Tafel tests revealed comparable anticorrosive properties of aluminum phosphates modified with ammonium, calcium, molybdenum in comparison with commercial phosphate.


Author(s):  
Maysam M. Abass ◽  
Nawal A. Rajab

Nanosponges (NS) of etodolac(ETO) was prepared using the emulsion solvent diffusion method ; the effects of drug: polymer ratio, the effect of level concentration of internal phase and stirring time and other variables that effect on the physical characteristics of NS were investigated and characterized, The selected formula was lyophilized then incorporated into hydrogel ; which also evaluated .The results show that the formulation that contain Drug: PVA:EC in ratio 1:3:2 is the best with smallest particle size 40.2±0.098 with polydispersibility0.005 and in vitro release 97.6±0.11%, , ETO NS Carbopol hydrogel produced a significant(p<0.05) improvement of the in vitro release than pure ETO hydrogel.


2020 ◽  
Vol 10 ◽  
pp. 184798042091151 ◽  
Author(s):  
Ping Song ◽  
Wuchen Du ◽  
Wanzhen Li ◽  
Longbao Zhu ◽  
Weiwei Zhang ◽  
...  

Polymerized polypeptide nanomicelles have attracted much attention as novel drug carriers because of their good biocompatibility and degradability. To prepare doxorubicin (DOX)-loaded nanomicelles, an amphiphilic peptide, FFHFFH-KKGRGD (P12), was synthesized by solid-phase synthesis, and the physicochemical and drug-release properties, as well as the cytotoxicity of the nanomicelles, were evaluated in vitro. The P12-DOX polymer micelles were prepared by dialysis. The morphology and particle size were characterized by transmission electron microscopy and dynamic light scattering. The critical micelle concentration (CMC) of the polymer was determined by the probe method, and the drug-release characteristics of the micelles were studied by dynamic dialysis. The cytotoxicity and uptake of the P12-DOX micelles were evaluated against mouse breast cancer cells (4T1) and human umbilical vein endothelial cells. The peptide polymer micelles containing DOX were uniformly sized and had a spherical core–shell structure with an average particle size of 128.6 nm. The CMC of the polymer was low (0.0357 mg/mL). The in vitro release of DOX from the micelles is slow and is consistent with first-order kinetics. The copolymer micelles of the P12 polypeptide and DOX can be used as nanoscale spherical carriers of hydrophobic drugs and have broad applicability.


Author(s):  
Sushant Kumar ◽  
Satheesh Madhav N V ◽  
Anurag Verma ◽  
Kamla Pathak

The purpose of this research was to isolate the smart biopolymer from the fruit pulp of Fragaria × ananassa (garden strawberry). We isolated natural fruit pulp to evaluate the potentiality of biopolymer in delivery of nanosized lamotrigine as an antiepileptic drug. Lamotrigine was nanosized by screening its nano-size particle by UV method. The nanosized lamotrigine was used for preparation of bionanoparticles (LF1-LF8) by sonication method. The isolated biopolymer was characterized for DSC, FTIR, NMR, Mass and Zeta particle size analysis. The obtained results confirm its polymeric nature in different analysis. The prepared bionanoparticles showed the release of lamotrigine in sustained manner over 36 hours. The release kinetic study was done by using the BIT-SOFT 1.12 software and T50% and T80%, r2 were calculated. All the formulation showed more than 99.78% drug release. The In-vitro release study of different formulations showed the % drug release from 90.92% to 99.78%. The different formulations were evaluated for the In-vitro release study and release kinetic was studied. The formulation LF5 was found to be the best formulation having T50% of 17 hours and T80% of 29 hours with r2 value of 0.9925. The best formulation LF5 showed up to 90.925% drug release over 36 hours. According to the release kinetic study, the best-fit model was found to be Koresmayer-Peppas and the mechanism of drug release was found to be anomalous transport. The results obtained from different evaluations like percentage entrapment efficiency, particle size, release study, kinetic studies and stability study revealed that isolated biopolymer has good potentiality to form bionanoparticles and it can be safely used as an alternative to synthetic and semisynthetic polymers for the preparation of lamotrigine loaded stable bionanoparticles


Sign in / Sign up

Export Citation Format

Share Document